SOME GENERALIZED HERMITE-HADAMARD TYPE INEQUALITIES INVOLVING FRACTIONAL INTEGRAL OPERATOR FOR FUNCTIONS WHOSE SECOND DERIVATIVES IN ABSOLUTE VALUE ARE S-CONVEX

被引:0
作者
Set, E. [1 ]
Dragomir, S. S. [2 ]
Gozpinar, A. [1 ]
机构
[1] Ordu Univ, Fac Sci & Arts, Dept Math, Ordu, Turkey
[2] Victoria Univ, Coll Engn & Sci, Math, Melbourne, Vic, Australia
来源
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE | 2019年 / 88卷 / 01期
关键词
Hermite-Hadamard inequality; convex function; Holder inequality; Riemann-Liouville fractional integral; fractional integral operator;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, a general integral identity for twice differentiable mapping involving fractional integral operators is derived. Secondly by using this identity we obtain some new generalized Hermite-Hadamards type inequalities for functions whose absolute values of second derivatives are s-convex and concave. The main results generalize the existing Hermite-Hadamard type inequalities involving the Riemann-Liouville fractional integral. Also we point out, some results in this study in some special cases such as setting s = 1, lambda = alpha, sigma (0) = 1 and w = 0, more reasonable than those obtained in [8].
引用
收藏
页码:87 / 100
页数:14
相关论文
共 28 条
[1]   Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense [J].
Alomari, M. ;
Darus, M. ;
Dragomir, S. S. ;
Cerone, P. .
APPLIED MATHEMATICS LETTERS, 2010, 23 (09) :1071-1076
[2]  
[Anonymous], 2011, CREATIVE MATH INFORM, DOI DOI 10.37193/CMI.2011.01.08
[3]  
[Anonymous], FASC MATH
[4]   New inequalities of Hermite-Hadamard type via s-convex functions in the second sense with applications [J].
Avci, Merve ;
Kavurmaci, Havva ;
Ozdemir, M. Emin .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) :5171-5176
[5]  
Breckner W. W., 1978, PUBL I MATH, V23, P13
[6]  
Dahmani Z., 2010, INT J NONLIN SCI NUM, V9, P493
[7]  
Dragomir S., 2000, Selected Topics on Hermite-Hadamard Inequalities and Applications
[8]  
Dragomir S., 1999, Demonstr. Math, V32, P687, DOI [10.1515/dema-1999-0403, DOI 10.1515/dema-1999-0403]
[9]  
Dragomir SS, 2015, J COMPUT ANAL APPL, V18, P655
[10]  
Gorenflo R., FRACTIONAL CALCULUS