Verifying multipartite entangled Greenberger-Horne-Zeilinger states via multiple quantum coherences

被引:104
作者
Wei, Ken X. [1 ]
Lauer, Isaac [1 ]
Srinivasan, Srikanth [1 ]
Sundaresan, Neereja [1 ]
McClure, Douglas T. [1 ]
Toyli, David [1 ]
McKay, David C. [1 ]
Gambetta, Jay M. [1 ]
Sheldon, Sarah [1 ]
机构
[1] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
SCHRODINGER CAT STATES; GENERATION;
D O I
10.1103/PhysRevA.101.032343
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The ability to generate and verify multipartite entanglement is an important benchmark for near-term quantum devices. We develop a scalable entanglement metric based on multiple quantum coherences and demonstrate experimentally on a 20-qubit superconducting device. We report a state fidelity of 0.5165 +/- 0.0036 for an 18-qubit GHZ state, indicating multipartite entanglement across all 18 qubits. Our entanglement metric is robust to noise and only requires measuring the population in the ground state; it can be readily applied to other quantum devices to verify multipartite entanglement.
引用
收藏
页数:10
相关论文
共 46 条
[21]   Generation of Bell and Greenberger-Horne-Zeilinger states from a hybrid qubit-photon-magnon system [J].
Qi, Shi-fan ;
Jing, Jun .
PHYSICAL REVIEW A, 2022, 105 (02)
[22]   Preparation of n-qubit Greenberger-Horne-Zeilinger entangled states in cavity QED: An approach with tolerance to nonidentical qubit-cavity coupling constants [J].
Yang, Chui-Ping .
PHYSICAL REVIEW A, 2011, 83 (06)
[23]   Effective preparation of the N-dimension spin Greenberger-Horne-Zeilinger state with quantum dots embedded inmicrocavities [J].
Kang, Yi-Hao ;
Xia, Yan ;
Lu, Pei-Min ;
Song, Jie .
JOURNAL OF MODERN OPTICS, 2016, 63 (13) :1313-1322
[24]   Generation of Greenberger-Horne-Zeilinger states for silicon-vacancy centers using a decoherence-free subspace [J].
Qiao, Yi-Fan ;
Chen, Jia-Qiang ;
Dong, Xing-Liang ;
Wang, Bo-Long ;
Hei, Xin-Lei ;
Shen, Cai-Peng ;
Zhou, Yuan ;
Li, Peng-Bo .
PHYSICAL REVIEW A, 2022, 105 (03)
[25]   On-chip multiphoton Greenberger-Horne-Zeilinger state based on integrated frequency combs [J].
Zhu, Pingyu ;
Zheng, Qilin ;
Xue, Shichuan ;
Wu, Chao ;
Yu, Xinyao ;
Wang, Yang ;
Liu, Yingwen ;
Qiang, Xiaogang ;
Wu, Junjie ;
Xu, Ping .
FRONTIERS OF PHYSICS, 2020, 15 (06)
[26]   Generation of Greenberger-Horne-Zeilinger States on Two-Dimensional Superconducting-Qubit Lattices via Parallel Multiqubit-Gate Operations [J].
Feng, Wei ;
Zhang, Guo-Qiang ;
Su, Qi-Ping ;
Zhang, Jun-Xiang ;
Yang, Chui-Ping .
PHYSICAL REVIEW APPLIED, 2022, 18 (06)
[27]   Preparation of Greenberger-Horne-Zeilinger and W states of three atoms trapped in one cavity through cavity output process [J].
Xia, Yan ;
Song, Jie ;
Lu, Pei-Min ;
Song, He-Shan .
OPTICS COMMUNICATIONS, 2011, 284 (04) :1094-1098
[28]   Large-scale Greenberger-Horne-Zeilinger states through a topologically protected zero-energy mode in a superconducting qutrit-resonator chain [J].
Han, Jin-Xuan ;
Wu, Jin-Lei ;
Wang, Yan ;
Xia, Yan ;
Jiang, Yong-Yuan ;
Song, Jie .
PHYSICAL REVIEW A, 2021, 103 (03)
[29]   Four-Photon Greenberger-Horne-Zeilinger Entanglement via Collective Two-Photon Coherence in Doppler-Broadened Atoms [J].
Park, Jiho ;
Kim, Heonoh ;
Moon, Han Seb .
ADVANCED QUANTUM TECHNOLOGIES, 2021, 4 (04)
[30]   Effective scheme for preparation of a spin-qubit Greenberger-Horne-Zeilinger state and W state in a quantum-dot-microcavity system [J].
Kang, Yi-Hao ;
Xia, Yan ;
Lu, Pei-Min .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2015, 32 (07) :1323-1329