In -situ formed free-standing Ir nanocatalysts as carbon- and binder-free cathode for rechargeable nonaqueous Li -O 2 batteries

被引:10
作者
Qian, Zhengyi [1 ]
Sun, Baoyu [1 ]
Li, Xudong [1 ]
Du, Lei [1 ]
Wang, Yang [1 ]
Du, Chunyu [1 ]
Zuo, Pengjian [1 ]
Ma, Yulin [1 ]
Yin, Geping [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, Dept MIIT Key Lab Crit Mat Technol New Energy Con, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
LITHIUM-OXYGEN BATTERY; LI-O-2; BATTERIES; HIGH-CAPACITY; LI2O2; PERFORMANCE; REDUCTION; OXIDATION; ELECTRODE; SIZE;
D O I
10.1016/j.jallcom.2020.155009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The design of carbon- and binder-free cathodes to replace the vulnerable carbon cathodes has become very imperative to further enhance the cycling performance of Li–O2 battery. Herein, free-standing Ir nanocatalyst as a novel carbon- and binder-free cathode is first proposed for rechargeable nonaqueous Li–O2 batteries. Impressively, the Li–O2 battery with freestanding iridium cathodes can maintain more than 67 stable cycles with a limited capacity of 800 mAh g−1 at a current density of 400 mA g−1. Greatly improved energy efficiency and rate capability are also successfully achieved. The iridium nanocatalyst is revealed to promote the discharge product formation via a newly desirable surface growth coupled with solution driven mechanism. This study sheds a new light on the role of iridium nanocatalyst, and provides a rational approach for the design of carbon- and binder-free cathodes of Li–O2 batteries. © 2020 Elsevier B.V.
引用
收藏
页数:7
相关论文
共 38 条
[1]  
Aetukuri NB, 2015, NAT CHEM, V7, P50, DOI [10.1038/nchem.2132, 10.1038/NCHEM.2132]
[2]   New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ξ basis set 6-311+G(d,p) [J].
Andersson, MP ;
Uvdal, P .
JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (12) :2937-2941
[3]   Computational Studies of Solubilities of LiO2 and Li2O2 in Aprotic Solvents [J].
Cheng, Lei ;
Redfern, Paul ;
Lau, Kah Chun ;
Assary, Rajeev S. ;
Narayanan, Badri ;
Curtiss, Larry A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (11) :E3696-E3701
[4]   A Critical Review of Li/Air Batteries [J].
Christensen, Jake ;
Albertus, Paul ;
Sanchez-Carrera, Roel S. ;
Lohmann, Timm ;
Kozinsky, Boris ;
Liedtke, Ralf ;
Ahmed, Jasim ;
Kojic, Aleksandar .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (02) :R1-R30
[5]   A free-standing-type design for cathodes of rechargeable Li-O2 batteries [J].
Cui, Yanming ;
Wen, Zhaoyin ;
Liu, Yu .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (11) :4727-4734
[6]   The Lithium-Oxygen Battery with Ether-Based Electrolytes [J].
Freunberger, Stefan A. ;
Chen, Yuhui ;
Drewett, Nicholas E. ;
Hardwick, Laurence J. ;
Barde, Fanny ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (37) :8609-8613
[7]  
Frisch M. J., 2010, Gaussian09, Rev. C. 01
[8]   Nature of Li2O2 Oxidation in a Li-O2 Battery Revealed by Operando X-ray Diffraction [J].
Ganapathy, Swapna ;
Adams, Brian D. ;
Stenou, Georgiana ;
Anastasaki, Maria S. ;
Goubitz, Kees ;
Miao, Xue-Fei ;
Nazar, Linda F. ;
Wagemaker, Marnix .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (46) :16335-16344
[9]   Breaking Long-Range Order in Iridium Oxide by Alkali Ion for Efficient Water Oxidation [J].
Gao, Jiajian ;
Xu, Cong-Qjao ;
Hung, Sung-Fu ;
Liu, Wei ;
Cai, Weizheng ;
Zeng, Zhiping ;
Jia, Chunmiao ;
Chen, Hao Ming ;
Xiao, Hai ;
Li, Jun ;
Huang, Yanqiang ;
Liu, Bin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (07) :3014-3023
[10]  
Hu YX, 2014, NANOSCALE, V6, P177, DOI [10.1039/c3nx04728, 10.1039/c3nr04728h]