Non-coding RNAs: Important participants in cardiac fibrosis

被引:6
作者
Dong, Yiheng [1 ]
Peng, Naling [1 ]
Dong, Lini [1 ]
Tan, Shengyu [1 ]
Zhang, Xiangyu [1 ]
机构
[1] Cent South Univ, Xiangya Hosp 2, Dept Geriatr, Changsha, Peoples R China
来源
FRONTIERS IN CARDIOVASCULAR MEDICINE | 2022年 / 9卷
关键词
non-coding RNA; microRNA; long non-coding RNA; cardiac fibrosis; biomarker; cardiac remodeling; HEART-FAILURE; MYOCARDIAL-INFARCTION; MICRORNA-150; PROTECTS; ISCHEMIC-INJURY; MOUSE HEART; PRESSURE; CELLS; INFLAMMATION; EXPRESSION; BIOMARKER;
D O I
10.3389/fcvm.2022.937995
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cardiac remodeling is a pathophysiological process activated by diverse cardiac stress, which impairs cardiac function and leads to adverse clinical outcome. This remodeling partly attributes to cardiac fibrosis, which is a result of differentiation of cardiac fibroblasts to myofibroblasts and the production of excessive extracellular matrix within the myocardium. Non-coding RNAs mainly include microRNAs and long non-coding RNAs. These non-coding RNAs have been proved to have a profound impact on biological behaviors of various cardiac cell types and play a pivotal role in the development of cardiac fibrosis. This review aims to summarize the role of microRNAs and long non-coding RNAs in cardiac fibrosis associated with pressure overload, ischemia, diabetes mellitus, aging, atrial fibrillation and heart transplantation, meanwhile shed light on the diagnostic and therapeutic potential of non-coding RNAs for cardiac fibrosis.
引用
收藏
页数:16
相关论文
共 122 条
  • [1] Role of miR-21 in the pathogenesis of atrial fibrosis
    Adam, Oliver
    Loehfelm, Bjoern
    Thum, Thomas
    Gupta, Shashi K.
    Puhl, Sarah-Lena
    Schaefers, Hans-Joachim
    Boehm, Michael
    Laufs, Ulrich
    [J]. BASIC RESEARCH IN CARDIOLOGY, 2012, 107 (05)
  • [2] MiR-150 Attenuates Maladaptive Cardiac Remodeling Mediated by Long Noncoding RNA MIAT and Directly Represses Profibrotic Hoxa4
    Aonuma, Tatsuya
    Moukette, Bruno
    Kawaguchi, Satoshi
    Barupala, Nipuni P.
    Sepulveda, Marisa N.
    Frick, Kyle
    Tang, Yaoliang
    Guglin, Maya
    Raman, Subha, V
    Cai, Chenleng
    Liangpunsakul, Suthat
    Nakagawa, Shinichi
    Kim, Il-man
    [J]. CIRCULATION-HEART FAILURE, 2022, 15 (04) : 379 - 394
  • [3] Cardiomyocyte microRNA-150 confers cardiac protection and directly represses proapoptotic small proline-rich protein 1A
    Aonuma, Tatsuya
    Moukette, Bruno
    Kawaguchi, Satoshi
    Barupala, Nipuni P.
    Sepulveda, Marisa N.
    Corr, Christopher
    Tang, Yaoliang
    Liangpunsakul, Suthat
    Payne, R. Mark
    Willis, Monte S.
    Kim, Il-Man
    [J]. JCI INSIGHT, 2021, 6 (18)
  • [4] MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death
    Aurora, Arin B.
    Mahmoud, Ahmed I.
    Luo, Xiang
    Johnson, Brett A.
    van Rooij, Eva
    Matsuzaki, Satoshi
    Humphries, Kenneth M.
    Hill, Joseph A.
    Bassel-Duby, Rhonda
    Sadek, Hesham A.
    Olson, Eric N.
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2012, 122 (04) : 1222 - 1232
  • [5] Endomyocardial miR-133a levels correlate with myocardial inflammation, improved left ventricular function, and clinical outcome in patients with inflammatory cardiomyopathy
    Besler, Christian
    Urban, Daniel
    Watzka, Stefan
    Lang, David
    Rommel, Karl-Philipp
    Kandolf, Reinhard
    Klingel, Karin
    Thiele, Holger
    Linke, Axel
    Schuler, Gerhard
    Adams, Volker
    Lurz, Philipp
    [J]. EUROPEAN JOURNAL OF HEART FAILURE, 2016, 18 (12) : 1442 - 1451
  • [6] Macrophage deficiency of miR-21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis
    Canfran-Duque, Alberto
    Rotllan, Noemi
    Zhang, Xinbo
    Fernandez-Fuertes, Marta
    Ramirez-Hidalgo, Cristina
    Araldi, Elisa
    Daimiel, Lidia
    Busto, Rebeca
    Fernandez-Hernando, Carlos
    Suarez, Yajaira
    [J]. EMBO MOLECULAR MEDICINE, 2017, 9 (09) : 1244 - 1262
  • [7] The microRNA-29/PGC1α regulatory axis is critical for metabolic control of cardiac function
    Caravia, Xurde M.
    Fanjul, Victor
    Oliver, Eduardo
    Roiz-Valle, David
    Moran-Alvarez, Alba
    Desdin-Mico, Gabriela
    Mittelbrunn, Maria
    Cabo, Roberto
    Vega, Jose A.
    Rodriguez, Francisco
    Fueyo, Antonio
    Gomez, Monica
    Lobo-Gonzalez, Manuel
    Bueno, Hector
    Velasco, Gloria
    Freije, Jose M. P.
    Andres, Vicente
    Ibanez, Borja
    Ugalde, Alejandro P.
    Lopez-Otin, Carlos
    [J]. PLOS BIOLOGY, 2018, 16 (10)
  • [8] MicroRNA-133 Modulates the β1-Adrenergic Receptor Transduction Cascade
    Castaldi, Alessandra
    Zaglia, Tania
    Di Mauro, Vittoria
    Carullo, Pierluigi
    Viggiani, Giacomo
    Borile, Giulia
    Di Stefano, Barbara
    Schiattarella, Gabriele Giacomo
    Gualazzi, Maria Giovanna
    Elia, Leonardo
    Stirparo, Giuliano Giuseppe
    Colorito, Maria Luisa
    Pironti, Gianluigi
    Kunderfranco, Paolo
    Esposito, Giovanni
    Bang, Marie-Louise
    Mongillo, Marco
    Condorelli, Gianluigi
    Catalucci, Daniele
    [J]. CIRCULATION RESEARCH, 2014, 115 (02) : 273 - +
  • [9] Engineered AAVs for non-invasive gene delivery to rodent and non-human primate nervous systems
    Chen, Xinhong
    Kumar, Sripriya Ravindra
    Adams, Cameron D.
    Yang, Daping
    Wang, Tongtong
    Wolfe, Damien A.
    Arokiaraj, Cynthia M.
    Ngo, Victoria
    Campos, Lillian J.
    Griffiths, Jessica A.
    Ichiki, Takako
    Mazmanian, Sarkis K.
    Osborne, Peregrine B.
    Keast, Janet R.
    Miller, Cory T.
    Fox, Andrew S.
    Chiu, Isaac M.
    Gradinaru, Viviana
    [J]. NEURON, 2022, 110 (14) : 2242 - +
  • [10] Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4
    Cheng, Yunhui
    Zhu, Ping
    Yang, Jian
    Liu, Xiaojun
    Dong, Shimin
    Wang, Xiaobin
    Chun, Bao
    Zhuang, Jian
    Zhang, Chunxiang
    [J]. CARDIOVASCULAR RESEARCH, 2010, 87 (03) : 431 - 439