Large deviations for spectral measures of some spiked matrices

被引:1
作者
Noiry, Nathan [1 ]
Rouault, Alain [2 ]
机构
[1] Telecom Paris, F-91120 Palaiseau, France
[2] Univ Paris Saclay, CNRS, UVSQ, Lab Math Versailles, F-78035 Versailles, France
关键词
Large deviations; sum rules; Jacobi coefficients; Verblunsky coefficients; matrix measures; relative entropy; LARGEST EIGENVALUE; PHASE-TRANSITION; SUM-RULES; PERTURBATIONS; JACOBI;
D O I
10.1142/S2010326322500393
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove large deviations principles for spectral measures of perturbed (or spiked) matrix models in the direction of an eigenvector of the perturbation. In each model under study, we provide two approaches, one of which relying on large deviations principle of unperturbed models derived in the previous work "Sum rules via large deviations" (Gamboa et al. [Sum rules via large deviations, J. Funct. Anal. 270(2) (2016) 509-559]).
引用
收藏
页数:35
相关论文
共 43 条
[1]  
ANDERSON G. W., 2010, Cambridge Studies in Advanced Mathematics, V118
[2]  
[Anonymous], 2005, AMS Colloquium Series
[3]   Bochner-Pearson-type characterization of the free Meixner class [J].
Anshelevich, Michael .
ADVANCES IN APPLIED MATHEMATICS, 2011, 46 (1-4) :25-45
[4]   On the distribution of the length of the longest increasing subsequence of random permutations [J].
Baik, J ;
Deift, P ;
Johansson, K .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :1119-1178
[5]   Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices [J].
Baik, J ;
Ben Arous, G ;
Péché, S .
ANNALS OF PROBABILITY, 2005, 33 (05) :1643-1697
[6]   Large deviations of the extreme eigenvalues of random deformations of matrices [J].
Benaych-Georges, F. ;
Guionnet, A. ;
Maida, M. .
PROBABILITY THEORY AND RELATED FIELDS, 2012, 154 (3-4) :703-751
[7]   Large deviations for the largest eigenvalues and eigenvectors of spiked Gaussian random matrices [J].
Biroli, Giulio ;
Guionnet, Alice .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25 :1-13
[8]  
Bolotnikov V, 2006, MEM AM MATH SOC, V181, P1
[9]   Asymptotic Expansion of β Matrix Models in the One-cut Regime [J].
Borot, G. ;
Guionnet, A. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 317 (02) :447-483
[10]   LARGE DEVIATIONS AND THE LUKIC CONJECTURE [J].
Breuer, Jonathan ;
Simon, Barry ;
Zeitouni, Ofer .
DUKE MATHEMATICAL JOURNAL, 2018, 167 (15) :2857-2902