Integrated Rare-Earth Doped Mode-Locked Lasers on a CMOS Platform

被引:3
|
作者
Kaertner, Franz X. [1 ,2 ,3 ]
Callahan, Patrick T. [1 ]
Shtyrkova, Katia [1 ,5 ]
Li, Nanxi [1 ,4 ]
Singh, Neetesh [1 ]
Xin, Ming [1 ,2 ,3 ]
Koustuban, Ravi [1 ]
Notaros, Jelena [1 ]
Magden, E. Salih [1 ]
Vermeulen, Diedrik [1 ]
Ippen, Erich P. [1 ]
Watts, Michael R. [1 ]
机构
[1] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany
[3] Univ Hamburg, Notkestr 85, D-22607 Hamburg, Germany
[4] Harvard Univ, John A Paulson Sch Engn & Appl Sci, 29 Oxford St, Cambridge, MA 02138 USA
[5] MIT, Lincoln Lab, 244 Wood St, Lexington, MA 02420 USA
来源
SILICON PHOTONICS: FROM FUNDAMENTAL RESEARCH TO MANUFACTURING | 2018年 / 10686卷
关键词
integrated optics; integrated mode-locked lasers; silicon photonics; rare-earth mode-locked lasers; ADDITIVE-PULSE; POWER;
D O I
10.1117/12.2318010
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Mode-locked lasers provide extremely low jitter optical pulse trains for a number of applications ranging from sampling of RF-signals and optical frequency combs to microwave and optical signal synthesis. Integrated versions have the advantage of high reliability, low cost and compact. Here, we describe a fully integrated mode-locked laser architecture on a CMOS platform that utilizes rare-earth doped gain media, double-chirped waveguide gratings for dispersion compensation and nonlinear Michelson Interferometers for generating an artificial saturable absorber to implement additive pulse mode locking on chip. First results of devices at 1.9 mu m using thulium doped aluminum-oxide glass and operating in the Q-switched mode locking regime are presented.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Mode-locked Nd-doped fiber laser at 930 nm
    Qian, Kai
    Wang, Hongjie
    Laroche, Mathieu
    Hideur, Ammar
    OPTICS LETTERS, 2014, 39 (02) : 267 - 270
  • [32] Stability and Chirp of Tightly Bunched Solitons From Nonlinear Polarization Rotation Mode-Locked Erbium-Doped Fiber Lasers
    Lin, Sheng-Fong
    Lin, Yung-Hsiang
    Cheng, Chih-Hsien
    Chi, Yu-Chieh
    Lin, Gong-Ru
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2016, 34 (22) : 5118 - 5128
  • [33] Improvements in mode-locked semiconductor diode lasers using monolithically integrated passive waveguides made by quantum-well intermixing
    Camacho, F
    Avrutin, EA
    Cusumano, P
    Helmy, AS
    Bryce, AC
    Marsh, JH
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1997, 9 (09) : 1208 - 1210
  • [34] Energy enhancement in mode-locked lasers using sinusoidal transmission functions for saturable absorption
    Ding, Edwin
    Shlizerman, Eli
    Kutz, J. Nathan
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XIX, 2011, 7933
  • [35] A Review of Cavity Design for Kerr Lens Mode-Locked Solid-State Lasers
    Yefet, Shai
    Pe'er, Avi
    APPLIED SCIENCES-BASEL, 2013, 3 (04): : 694 - 724
  • [36] Mode-Locked Semiconductor Lasers: from Giga-Hertz to Tera-Hertz
    Marsh, John H.
    Hou, Lianping
    2014 INTERNATIONAL CONFERENCE LASER OPTICS, 2014,
  • [37] Research Progress of New Regime Mode-Locked Fiber Lasers and Amplification and Compression Technologies
    Fan Mengqiu
    Xia Handing
    Xu Dangpeng
    Zhang Rui
    Zheng Wanguo
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (03)
  • [38] Topological engineering of mode-locked fibre lasers: NALM/NALM2 technologies
    Ivanenko, A. V.
    Kokhanovskiy, A. Y.
    Gervaziev, M. D.
    Smirnov, S. V.
    Kobtsev, S. K.
    Turitsyn, S. K.
    HIGH-POWER LASERS AND APPLICATIONS IX, 2018, 10811
  • [39] Near transform-limited nanosecond pulse generation in mode-locked fiber lasers
    Chen, Fanglin
    Komarov, Andrey
    Tang, Xiahui
    Tang, Ming
    Zhao, Zhi
    Kovachev, Lubomir
    Cheng, Xueping
    Zhao, Luming
    OPTICS EXPRESS, 2025, 33 (04): : 8782 - 8790
  • [40] Passively Mode-Locked Fiber Lasers Based on Nonlinearity at 2-μm Band
    Wang, Tianshu
    Ma, Wanzhuo
    Jia, Qingsong
    Su, Qingchao
    Liu, Peng
    Zhang, Peng
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2018, 24 (03)