Cyclic deformation induced strengthening and unusual rate sensitivity in Cu/Ru nanolayered films

被引:33
作者
Cao, Z. H. [1 ,2 ]
Wei, M. Z. [1 ]
Ma, Y. J. [1 ]
Sun, C. [1 ]
Lu, H. M. [1 ]
Fan, Z. [2 ,3 ]
Meng, X. K. [1 ]
机构
[1] Nanjing Univ, Coll Engn & Appl Sci, Inst Mat Engn, Natl Lab Solid State Microstruct, Nanjing, Jiangsu, Peoples R China
[2] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
[3] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA
基金
中国国家自然科学基金;
关键词
Layered material; Cyclic loading; Rate sensitivity; Strengthening mechanisms; Dislocations; STRAIN-RATE SENSITIVITY; SIZE-DEPENDENT DEFORMATION; SOLID-STATE AMORPHIZATION; PLASTIC-DEFORMATION; MECHANICAL-PROPERTIES; METALLIC MULTILAYERS; TEXTURE EVOLUTION; GRAIN-SIZE; MICROSTRUCTURAL EVOLUTION; CONVENTIONAL THEORY;
D O I
10.1016/j.ijplas.2017.08.005
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work, we have systematically investigated the effect of cyclic deformation on the strength and rate sensitivity of Cu/Ru multilayers with different individual layer thickness (h) by nanoindentation tests. It was found that cyclic deformation remarkably enhances the hardness of Cu/Ru multilayers comparing with the specimens by monotonic loading. The rate sensitivity (m) of multilayer exhibits an anomalous size dependence after nano scale cyclic deformation. When h > 10 nm, the m linearly increases with increasing cycle number of loading-unloading (s). However, the m sharply decreases with increasing s when h < 10 nm, presenting an inverse cyclic deformation effect on m. An obvious Bauschinger effect is observed during cyclic loading, where the evolution of effective stress is consistent with the m. Cyclic deformation induced dislocation accumulation and arrays at the heterogeneous interface are the intrinsic plastic mechanism for the enhanced rate sensitivity. The formation of amorphous layers at the critical his mainly responsible for the inverse size m. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:43 / 57
页数:15
相关论文
共 73 条
[11]   Microstructural evolution and its influence on creep and stress relaxation in nanocrystalline Ni [J].
Cao, Z. H. ;
Wang, L. ;
Hu, K. ;
Huang, Y. L. ;
Meng, X. K. .
ACTA MATERIALIA, 2012, 60 (19) :6742-6754
[12]   Size-dependent rate sensitivity and plasticity of nanocrystalline Ru films [J].
Cao, Z. H. ;
Huang, Y. L. ;
Meng, X. K. .
SCRIPTA MATERIALIA, 2010, 63 (10) :993-996
[13]   Strain rate sensitivity and activation volume of Cu/Ni metallic multilayer thin films measured via micropillar compression [J].
Carpenter, J. S. ;
Misra, A. ;
Uchic, M. D. ;
Anderson, P. M. .
APPLIED PHYSICS LETTERS, 2012, 101 (05)
[14]   Bulk texture evolution of Cu-Nb nanolamellar composites during accumulative roll bonding [J].
Carpenter, J. S. ;
Vogel, S. C. ;
LeDonne, J. E. ;
Hammon, D. L. ;
Beyerlein, I. J. ;
Mara, N. A. .
ACTA MATERIALIA, 2012, 60 (04) :1576-1586
[15]   Hardness and strain rate sensitivity of nanocrystalline Cu [J].
Chen, J ;
Lu, L ;
Lu, K .
SCRIPTA MATERIALIA, 2006, 54 (11) :1913-1918
[16]   Microstructure and strengthening mechanisms in Cu/Fe multilayers [J].
Chen, Y. ;
Liu, Y. ;
Sun, C. ;
Yu, K. Y. ;
Song, M. ;
Wang, H. ;
Zhang, X. .
ACTA MATERIALIA, 2012, 60 (18) :6312-6321
[17]   Dislocation starvation and exhaustion hardening in Mo alloy nanofibers [J].
Chisholm, C. ;
Bei, H. ;
Lowry, M. B. ;
Oh, J. ;
Asif, S. A. Syed ;
Warren, O. L. ;
Shan, Z. W. ;
George, E. P. ;
Minor, A. M. .
ACTA MATERIALIA, 2012, 60 (05) :2258-2264
[18]   Constitutive model for inhomogeneous flow in bulk metallic glasses [J].
Dubach, Alban ;
Dalla Torre, Florian H. ;
Loeffler, Joerg F. .
ACTA MATERIALIA, 2009, 57 (03) :881-892
[19]   Microstructural evolution of nanolayered Cu-Nb composites subjected to high-pressure torsion [J].
Ekiz, E. H. ;
Lach, T. G. ;
Averback, R. S. ;
Mara, N. A. ;
Beyerlein, I. J. ;
Pouryazdan, M. ;
Hahn, H. ;
Bellon, P. .
ACTA MATERIALIA, 2014, 72 :178-191
[20]   On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: Back stress and effective stress [J].
Feaugas, X .
ACTA MATERIALIA, 1999, 47 (13) :3617-3632