Predicted Optimal Bifunctional Electrocatalysts for the Hydrogen Evolution Reaction and the Oxygen Evolution Reaction Using Chalcogenide Heterostructures Based on Machine Learning Analysis of in Silico Quantum Mechanics Based High Throughput Screening

被引:78
作者
Ge, Lei [1 ]
Yuan, Hao [1 ]
Min, Yuxiang [1 ]
Li, Li [1 ]
Chen, Shiqian [1 ]
Xu, Lai [1 ]
Goddard, William A., III [2 ,3 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China
[2] CALTECH, Mat & Proc Simulat Ctr MSC, Pasadena, CA 91125 USA
[3] CALTECH, JCAP, Pasadena, CA 91125 USA
基金
中国国家自然科学基金;
关键词
GENERALIZED GRADIENT APPROXIMATION; CHARGE-TRANSFER; SINGLE; PSEUDOPOTENTIALS; MONOLAYER; CATALYST; MOS2/WS2; GROWTH; SIZE;
D O I
10.1021/acs.jpclett.9b03875
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional van der Waals heterostructure materials, particularly transition metal dichalcogenides (TMDC), have proved to be excellent photoabsorbers for solar radiation, but performance for such electrocatalysis processes as water splitting to form H-2 and O-2 is not adequate. We propose that dramatically improved performance may be achieved by combining two independent TMDC while optimizing such descriptors as rotational angle, bond length, distance between layers, and the ratio of the bandgaps of two component materials. In this paper we apply the least absolute shrinkage and selection operator (LASSO) process of artificial intelligence incorporating these descriptors together with quantum mechanics (density functional theory) to predict novel structures with predicted superior performance. Our predicted best system is MoTe2/WTe2 with a rotation of 300 degrees which is predicted to have an overpotential of 0.03 V for HER and 0.17 V for OER, dramatically improved over current electrocatalysts for water splitting.
引用
收藏
页码:869 / +
页数:15
相关论文
共 55 条
[1]   New Approach to Unveiling Individual Atomic Layers of 2D Materials and Their Heterostructures [J].
Abidi, Irfan Haider ;
Weng, Lu-Tao ;
Wong, Chi Pui Jeremy ;
Tyagi, Abhishek ;
Gan, Lin ;
Ding, Yao ;
Li, Man ;
Gao, Zhaoli ;
Xue, Ruiwen ;
Hossain, Md Delowar ;
Zhuang, Minghao ;
Ou, Xuewu ;
Luo, Zhengtang .
CHEMISTRY OF MATERIALS, 2018, 30 (05) :1718-1728
[2]   SnS2 quantum dots growth on MoS2: Atomic-level heterostructure for electrocatalytic hydrogen evolution [J].
Ali, Tariq ;
Wang, Xianfu ;
Tang, Kai ;
Li, Qun ;
Sajjad, Saman ;
Khan, Shahid ;
Farooqi, Sidra Anis ;
Yan, Chenglin .
ELECTROCHIMICA ACTA, 2019, 300 :45-52
[3]   Nanopolygons of Monolayer MS2: Best Morphology and Size for HER Catalysis [J].
An, Yu-Rong ;
Fan, Xiao-Li ;
Luo, Zhi-Fen ;
Lau, Woon-Ming .
NANO LETTERS, 2017, 17 (01) :368-376
[4]   Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors [J].
Calle-Vallejo, Federico ;
Tymoczko, Jakub ;
Colic, Viktor ;
Vu, Quang Huy ;
Pohl, Marcus D. ;
Morgenstern, Karina ;
Loffreda, David ;
Sautet, Philippe ;
Schuhmann, Wolfgang ;
Bandarenka, Aliaksandr S. .
SCIENCE, 2015, 350 (6257) :185-189
[5]   Fast Prediction of Adsorption Properties for Platinum Nanocatalysts with Generalized Coordination Numbers [J].
Calle-Vallejo, Federico ;
Martinez, Jose I. ;
Garcia-Lastra, Juan M. ;
Sautet, Philippe ;
Loffreda, David .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (32) :8316-8319
[6]   Ultrafast Charge Separation and Indirect Exciton Formation in a MoS2-MoSe2 van der Waals Heterostructure [J].
Ceballos, Frank ;
Bellus, Matthew Z. ;
Chiu, Hsin-Ying ;
Zhao, Hui .
ACS NANO, 2014, 8 (12) :12717-12724
[7]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589]
[8]   Stacking-mode confined growth of 2H-MoTe2/MoS2 bilayer heterostructures for UV-vis-IR photodetectors [J].
Ding, Yao ;
Zhou, Nan ;
Gan, Lin ;
Yan, Xingxu ;
Wu, Ruizhe ;
Abidi, Irfan H. ;
Waleed, Aashir ;
Pan, Jie ;
Ou, Xuewu ;
Zhang, Qicheng ;
Zhuang, Minghao ;
Wang, Peng ;
Pan, Xiaoqing ;
Fan, Zhiyong ;
Zhai, Tianyou ;
Luo, Zhengtang .
NANO ENERGY, 2018, 49 :200-208
[9]   Stacking-Mode-Induced Reactivity Enhancement for Twisted Bilayer Graphene [J].
Ding, Yao ;
Peng, Qing ;
Gan, Lin ;
Wu, Ruizhe ;
Ou, Xuewu ;
Zhang, Qicheng ;
Luo, Zhengtang .
CHEMISTRY OF MATERIALS, 2016, 28 (04) :1034-1039
[10]   Learning physical descriptors for materials science by compressed sensing [J].
Ghiringhelli, Luca M. ;
Vybiral, Jan ;
Ahmetcik, Emre ;
Ouyang, Runhai ;
Levchenko, Sergey V. ;
Draxl, Claudia ;
Scheffler, Matthias .
NEW JOURNAL OF PHYSICS, 2017, 19