Common fixed points of almost generalized contractive mappings in ordered metric spaces

被引:110
作者
Ciric, Ljubomir [1 ]
Abbas, Mujahid [2 ]
Saadati, Reza [3 ]
Hussain, Nawab [4 ]
机构
[1] Fac Mech Engn, Belgrade 11000, Serbia
[2] Lahore Univ Management Sci, Dept Math, Ctr Adv Studies Math, Lahore 54792, Pakistan
[3] Islamic Azad Univ, Dept Math, Sci & Res Branch, Tehran, Iran
[4] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
关键词
Coincidence point; Point of coincidence; Common fixed point; Almost contraction; Ordered metric spaces; CIRIC-TYPE; THEOREMS;
D O I
10.1016/j.amc.2010.12.060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence theorems of common fixed points for two weakly increasing mappings satisfying an almost generalized contractive condition in ordered metric spaces are proved. Some comparative example are constructed which illustrate the values of the obtained results in comparison to some of the existing ones in literature. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:5784 / 5789
页数:6
相关论文
共 18 条
[1]   Noncommuting selfmaps and invariant approximations [J].
Al-Thagafi, MA ;
Shahzad, N .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (12) :2778-2786
[2]  
Babu GVR, 2008, CARPATHIAN J MATH, V24, P8
[3]   Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition [J].
Beg, Ismat ;
Abbas, Mujahid .
FIXED POINT THEORY AND APPLICATIONS, 2006, 2006 (1)
[4]  
Berinde V, 2009, CARPATHIAN J MATH, V25, P157
[5]  
Berinde V, 2009, CARPATHIAN J MATH, V25, P13
[6]  
Berinde V., 2004, Nonlinear Anal. Forum., V9, P43
[7]  
Berinde V, 2010, MATH COMMUN, V15, P229
[8]   GENERALIZATION OF BANACHS CONTRACTION PRINCIPLE [J].
CIRIC, LB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 45 (02) :267-273
[9]   Common fixed point theorems for non-self-mappings in metric spaces of hyperbolic type [J].
Ciric, Ljubomir ;
Rakocevic, Vladimir ;
Radenovic, Stojan ;
Rajovic, Miloje ;
Lazovic, Rade .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (11) :2966-2974
[10]  
Ciric L, 2010, PUBL MATH-DEBRECEN, V76, P31