ON THE SECOND EIGENVALUE OF NONLINEAR EIGENVALUE PROBLEMS

被引:0
作者
Degiovanni, Marco [1 ]
Marzocchi, Marco [1 ]
机构
[1] Univ Cattolica Sacro Cuore, Dipartimento Matemat & Fis, Via Musei 41, I-25121 Brescia, Italy
关键词
Nonlinear eigenvalue problems; variational methods; quasilinear elliptic equations; CRITICAL-POINT THEORY; SIMPLICITY; THEOREMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is devoted to the characterization of the second eigenvalue of nonlinear eigenvalue problems. We propose an abstract approach which allows to treat nonsmooth quasilinear problems and also to recover, in a unified way, previous results concerning the p-Laplacian.
引用
收藏
页数:22
相关论文
共 33 条
  • [1] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [2] ANANE A, 1987, CR ACAD SCI I-MATH, V305, P725
  • [3] Anane A., 1996, Pitman Res. Notes Math. Ser., V343, P1
  • [4] [Anonymous], 1993, Topol. Methods Nonlinear Anal., DOI DOI 10.12775/TMNA.1993.012
  • [5] [Anonymous], 1993, PROGR NONLINEAR DIFF
  • [6] [Anonymous], 1964, Topological Methods in the Theory of Nonlinear Integral Equations
  • [7] Asymmetric elliptic problems with indefinite weights
    Arias, M
    Campos, J
    Cuesta, M
    Gossez, JP
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2002, 19 (05): : 581 - 616
  • [8] The second eigenvalue of the fractional p-Laplacian
    Brasco, Lorenzo
    Parini, Enea
    [J]. ADVANCES IN CALCULUS OF VARIATIONS, 2016, 9 (04) : 323 - 355
  • [9] A note on positive eigenfunctions and hidden convexity
    Brasco, Lorenzo
    Franzina, Giovanni
    [J]. ARCHIV DER MATHEMATIK, 2012, 99 (04) : 367 - 374
  • [10] Cerami G., 1978, I LOMBARDO ACCAD S A, V112, p332?336