How Intrinsic Phonons Manifest in Infrared Plasmonic Resonances of Crystalline Lead Nanowires

被引:3
作者
Vogt, Jochen [1 ]
Chung Vu Hoang [1 ,2 ]
Huck, Christian [1 ]
Neubrech, Frank [1 ,3 ]
Pucci, Annemarie [1 ]
机构
[1] Heidelberg Univ, Kirchhoff Inst Phys, Neuenheimer Feld 227, D-69120 Heidelberg, Germany
[2] Vietnam Acad Sci & Technol, Inst Mat Sci, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
[3] Univ Stuttgart, Phys Inst 4, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
关键词
TEMPERATURE-DEPENDENCE; NANOANTENNA ARRAYS; GOLD NANORODS; SURFACE; ENHANCEMENT; GROWTH; METALS; PB; POLARITONS; SCATTERING;
D O I
10.1021/acs.jpcc.6b05674
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single-crystalline lead nanowires with length of about one micrometer and with effective diameters of a few tens, of nanometers have been grown on vicinal silicon by a self-assembly process. They show strong plasmonic resonances in the infrared with a remarkable enhancement of the extinction upon the cooling below room temperature. The increase of the plasmonic extinction at resonance is linear with decreasing temperature but saturates before the Debye temperature is approached. This observation is in full accordance with the quasi-static description of plasmonic extinction with the intrinsic damping dominated by phonons and thus linearly temperature dependent well above the Debye temperature. The different slopes of this linear function for different wire thickness indicate the importance of surface and near surface phonon properties that can be described by a Debye temperature that is lower than the bulk value. The careful spectral analysis also yields temperature independent contributions to the electronic scattering rates for various wire thicknesses and, furthermore, a resonance frequency decreasing with temperature, which corresponds to the predicted trend in renormalization theory for electron-phonon interaction in a metal like lead.
引用
收藏
页码:19302 / 19307
页数:6
相关论文
共 39 条
  • [1] Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays
    Adato, Ronen
    Yanik, Ahmet A.
    Amsden, Jason J.
    Kaplan, David L.
    Omenetto, Fiorenzo G.
    Hong, Mi K.
    Erramilli, Shyamsunder
    Altug, Hatice
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (46) : 19227 - 19232
  • [2] CALCULATION OF TEMPERATURE DEPENDENCE OF ELECTRON-PHONON MASS ENHANCEMENT
    ALLEN, PB
    COHEN, ML
    [J]. PHYSICAL REVIEW B, 1970, 1 (04): : 1329 - &
  • [3] ELECTRON-PHONON EFFECTS IN INFRARED PROPERTIES OF METALS
    ALLEN, PB
    [J]. PHYSICAL REVIEW B, 1971, 3 (02): : 305 - &
  • [4] ASHCROFT NW, 2001, SOLID STATE PHYS
  • [5] Encapsulated Annealing: Enhancing the Plasmon Quality Factor in Lithographically-Defined Nanostructures
    Bosman, Michel
    Zhang, Lei
    Duan, Huigao
    Tan, Shu Fen
    Nijhuis, Christian A.
    Qiu, Cheng-Wei
    Yang, Joel K. W.
    [J]. SCIENTIFIC REPORTS, 2014, 4
  • [6] Brune H, 1998, SURF SCI REP, V31, P121, DOI 10.1016/S0167-5729(99)80001-6
  • [7] Silver nanowires as surface plasmon resonators
    Ditlbacher, H
    Hohenau, A
    Wagner, D
    Kreibig, U
    Rogers, M
    Hofer, F
    Aussenegg, FR
    Krenn, JR
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (25)
  • [8] Electronic growth of Pb on the vicinal Si surface
    Fokin, D. A.
    Bozhko, S. I.
    Dubost, V.
    Debontridder, F.
    Ionov, A. M.
    Cren, T.
    Roditchev, D.
    [J]. PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7, NO 2, 2010, 7 (02): : 165 - 168
  • [9] MEAN DISPLACEMENT OF SURFACE ATOMS IN PALLADIUM AND LEAD SINGLE CRYSTALS
    GOODMAN, RM
    FARRELL, HH
    SOMORJAI, GA
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1968, 48 (03) : 1046 - &
  • [10] Ultra-fast electron diffraction at surfaces: From nanoscale heat transport to driven phase transitions
    Hanisch-Blicharski, A.
    Janzen, A.
    Krenzer, B.
    Wall, S.
    Klasing, F.
    Kalus, A.
    Frigge, T.
    Kammler, M.
    Horn-von Hoegen, M.
    [J]. ULTRAMICROSCOPY, 2013, 127 : 2 - 8