Core reduction for singular Riemannian foliations and applications to positive curvature

被引:2
作者
Corro, Diego [1 ,2 ]
Moreno, Adam [3 ,4 ]
机构
[1] Univ Nacl Autonoma Mexico, Unidad Oaxaca, Inst Matemat, Antonio de Leon 2, Oaxaca 68000, Oaxaca De Juare, Mexico
[2] Karlsruher Inst Technol, Fak Math, Englerstr 2, D-76181 Karlsruhe, Germany
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[4] Amherst Coll, Math & Stat Dept, 220 South Pleasant St, Amherst, MA 01002 USA
关键词
Singular Riemannian foliation; Positive sectional curvature; Alexandrov spaces; SPACES;
D O I
10.1007/s10455-022-09856-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We expand upon the notion of a pre-section for a singular Riemannian foliation (M, F) i.e. a proper submanifold N subset of M retaining all the transverse geometry of the foliation. This generalization of a polar foliation provides a similar reduction, allowing one to recognize certain geometric or topological properties of (M, F) and the leaf space M/F. In particular, we show that if a foliated manifold M has positive sectional curvature and contains a nontrivial pre-section, then the leaf space M/F has nonempty boundary. We recover as corollaries the known result for the special case of polar foliations as well as the well-known analogue for isometric group actions.
引用
收藏
页码:617 / 634
页数:18
相关论文
共 23 条
[1]  
Alexandrino M. M., 2015, LIE GROUPS GEOMETRIC
[2]   Progress in the theory of singular Riemannian foliations [J].
Alexandrino, Marcos M. ;
Briquet, Rafael ;
Toeben, Dirk .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (02) :248-267
[3]  
Burago D, 2001, Graduate Studies in Mathematics, V33
[4]   ALEXANDROV,A.D. SPACES WITH CURVATURE BOUNDED BELOW [J].
BURAGO, Y ;
GROMOV, M ;
PERELMAN, G .
RUSSIAN MATHEMATICAL SURVEYS, 1992, 47 (02) :1-58
[5]  
Corro, 2019, ARXIV190307191 MATHD
[6]   Singular Riemannian foliations and applications to positive and non-negative curvature [J].
Galaz-Garcia, Fernando ;
Radeschi, Marco .
JOURNAL OF TOPOLOGY, 2015, 8 (03) :603-620
[7]   Copolarity of isometric actions [J].
Gorodski, C ;
Olmos, C ;
Tojeiro, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (04) :1585-1608
[8]  
Gorodski C, 2014, J REINE ANGEW MATH, V691, P61, DOI 10.1515/crelle-2012-0085
[9]   Global G-manifold reductions and resolutions [J].
Grove, K ;
Searle, C .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2000, 18 (3-4) :437-446
[10]  
Lang S., 1999, FUNDAMENTALS DIFFERE, DOI DOI 10.1007/978-1-4612-0541-8