Recommendation System Based on Item and User Similarity on Restaurants Directory Online

被引:0
作者
Mustofa, Aji Achmad [1 ]
Budi, Indra [1 ]
机构
[1] Univ Indonesia, Fac Comp Sci, Depok, Indonesia
来源
2018 6TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY (ICOICT) | 2018年
关键词
recommendation system; restaurant recommendation system; item similarity; user similarity;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The growing number of internet companies are demanding the company to innovate through technology. This is also applied to restaurant directory companies, they should give recommendation of restaurant which suit best on customer needs. This study aims to develop a system to provide recommendation for customer in restaurant selection. We merge the item similarity and user similarity features to generate recommendations. Evaluation shows that the recommendation system based on item similarity yields higher F1-measure value when comparing to user similarity.
引用
收藏
页码:70 / 74
页数:5
相关论文
共 11 条
[1]  
Aguilar J., 2016, APPL COMPUTING INFOR, P147
[2]  
[Anonymous], 2016, RECOMMENDER SYSTEMS, DOI DOI 10.1007/978-3-319-29659-3
[3]  
Aprilianti M, 2016, INT C ADV COMP SCI I, P321, DOI 10.1109/ICACSIS.2016.7872772
[4]  
Cao Y., 2006, EXPERT SYSTEMS APPL, P230
[5]  
Chaffey D., 2015, DIGITAL BUSINESS E C, V6th
[6]   Item-network-based collaborative filtering: A personalized recommendation method based on a user's item network [J].
Ha, Taehyun ;
Lee, Sangwon .
INFORMATION PROCESSING & MANAGEMENT, 2017, 53 (05) :1171-1184
[7]   Recommendation systems: Principles, methods and evaluation [J].
Isinkaye, F. O. ;
Folajimi, Y. O. ;
Ojokoh, B. A. .
EGYPTIAN INFORMATICS JOURNAL, 2015, 16 (03) :261-273
[8]  
Najafabadi M., 2016, COMPUT HUM BEHAV, P113
[9]  
Paradarami T., 2011, EXPERT SYSTEMS APPL, P300
[10]  
Ricci F, 2011, RECOMMENDER SYSTEMS HANDBOOK, P1, DOI 10.1007/978-0-387-85820-3_1