On the best rank-1 approximation to higher-order symmetric tensors

被引:23
作者
Ni, Guyan [1 ]
Wang, Yiju
机构
[1] Natl Univ Def Technol, Dept Math, Changsha 410073, Hunan, Peoples R China
[2] Qufu Normal Univ, Sch Management Sci & Operat Res, Rizhao Shandong, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
even-order tensors; rank-1; tensors; symmetric tensors;
D O I
10.1016/j.mcm.2007.01.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we consider the best rank-1 approximation to higher-order symmetric tensors in the least-squares sense, and show that the best rank-1 approximation of a symmetric tensor with even order m can be determined by m/2 unit spheres and a best symmetric rank-1 approximation of a symmetric tensor with order 4 and dimension 2 is also its best rank-1 approximation. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1345 / 1352
页数:8
相关论文
共 20 条
[1]  
Bazaraa M.S., 1993, NONLINEAR PROGRAMMIN
[2]   High-order contrasts for independent component analysis [J].
Cardoso, JF .
NEURAL COMPUTATION, 1999, 11 (01) :157-192
[3]  
COMMON P, IN PRESS SIAM J MATR
[4]   INDEPENDENT COMPONENT ANALYSIS, A NEW CONCEPT [J].
COMON, P .
SIGNAL PROCESSING, 1994, 36 (03) :287-314
[5]   Decomposition of quantics in sums of powers of linear forms [J].
Comon, P ;
Mourrain, B .
SIGNAL PROCESSING, 1996, 53 (2-3) :93-107
[6]   First-order perturbation analysis of the best rank-(R1, R2, R3) approximation in multilinear algebra [J].
De Lathauwer, L .
JOURNAL OF CHEMOMETRICS, 2004, 18 (01) :2-11
[7]   A multilinear singular value decomposition [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1253-1278
[8]   On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1324-1342
[9]  
DESILVA V, IN PRESS SIAM J MATR
[10]   APOLARITY AND CANONICAL-FORMS FOR HOMOGENEOUS POLYNOMIALS [J].
EHRENBORG, R ;
ROTA, GC .
EUROPEAN JOURNAL OF COMBINATORICS, 1993, 14 (03) :157-181