Dynamics of polymer translocation through kinked nanopores

被引:12
作者
Wang, Junfang
Wang, Yilin
Luo, Kaifu [1 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Soft Matter Chem, Collaborat Innovat Ctr Chem Energy Mat, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
DNA TRANSLOCATION; MOLECULES;
D O I
10.1063/1.4913468
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer translocation through nanopore has potential technological applications for DNA sequencing, where one challenge problem is to slow down translocation speed. Inspired by experimental findings that kinked nanopores exhibit a large reduction in translocation velocity compared with their straight counterparts, we investigate the dynamics of polymer translocation through kinked nanopores in two dimensions under an applied external field. With increasing the tortuosity of an array of nanopores, our analytical results show that the translocation probability decreases. Langevin dynamics simulation results support this prediction and further indicate that with increasing the tortuosity, translocation time shows a slow increase followed by a rapid increase after a critical tortuosity. This behavior demonstrates that kinked nanopores can effectively reduce translocation speed. These results are interpreted by the roles of the tortuosity for decreasing the effective nanopore diameter, increasing effective nanopore length, and greatly increasing the DNA-pore friction. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 33 条
[1]  
Alberts B., 1994, MOL BIOL CELL
[2]  
Allen M. P., 2017, COMPUTER SIMULATION
[3]   The potential and challenges of nanopore sequencing [J].
Branton, Daniel ;
Deamer, David W. ;
Marziali, Andre ;
Bayley, Hagan ;
Benner, Steven A. ;
Butler, Thomas ;
Di Ventra, Massimiliano ;
Garaj, Slaven ;
Hibbs, Andrew ;
Huang, Xiaohua ;
Jovanovich, Stevan B. ;
Krstic, Predrag S. ;
Lindsay, Stuart ;
Ling, Xinsheng Sean ;
Mastrangelo, Carlos H. ;
Meller, Amit ;
Oliver, John S. ;
Pershin, Yuriy V. ;
Ramsey, J. Michael ;
Riehn, Robert ;
Soni, Gautam V. ;
Tabard-Cossa, Vincent ;
Wanunu, Meni ;
Wiggin, Matthew ;
Schloss, Jeffery A. .
NATURE BIOTECHNOLOGY, 2008, 26 (10) :1146-1153
[4]  
Chen Z, 2010, NAT MATER, V9, P667, DOI [10.1038/NMAT2805, 10.1038/nmat2805]
[5]  
de Gennes P. G., 1979, Scaling Concepts in Polymer Physics
[6]   NUMERICAL-INTEGRATION OF THE LANGEVIN EQUATION - MONTE-CARLO SIMULATION [J].
ERMAK, DL ;
BUCKHOLZ, H .
JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 35 (02) :169-182
[7]   Slowing DNA translocation in a solid-state nanopore [J].
Fologea, D ;
Uplinger, J ;
Thomas, B ;
McNabb, DS ;
Li, JL .
NANO LETTERS, 2005, 5 (09) :1734-1737
[8]   The electromechanics of DNA in a synthetic nanopore [J].
Heng, JB ;
Aksimentiev, A ;
Ho, C ;
Marks, P ;
Grinkova, YV ;
Sligar, S ;
Schulten, K ;
Timp, G .
BIOPHYSICAL JOURNAL, 2006, 90 (03) :1098-1106
[9]   Unifying model of driven polymer translocation [J].
Ikonen, T. ;
Bhattacharya, A. ;
Ala-Nissila, T. ;
Sung, W. .
PHYSICAL REVIEW E, 2012, 85 (05)
[10]   Anomalous dynamics of forced translocation [J].
Kantor, Y ;
Kardar, M .
PHYSICAL REVIEW E, 2004, 69 (02) :021806-1