The Maximal Rank Conjecture and Rank Two Brill-Noether Theory

被引:0
作者
Farkas, Gavril [1 ]
Ortega, Angela [1 ]
机构
[1] Humboldt Univ, Inst Math, Linden 6, D-10099 Berlin, Germany
关键词
Koszul cohomology; moduli space of curves; vector bundles; MODULI SPACES; KOSZUL COHOMOLOGY; PETRI MAP; CURVES; DIVISORS; BUNDLES; LOCI;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe applications of Koszul cohomology to the Brill-Noether theory of rank 2 vector bundles. Among other things, we show that in every genus g > 10, there exist curves invalidating Mercat's Conjecture for rank 2 bundles. On the other hand, we prove that Mercat's Conjecture holds for general curves of bounded genus, and its failure locus is a Koszul divisor in the moduli space of curves. We also formulate a conjecture concerning the minimality of Betti diagrams of suitably general curves, and point out its consequences to rank 2 Brill-Noether theory.
引用
收藏
页码:1265 / 1295
页数:31
相关论文
共 35 条
  • [1] [Anonymous], 1985, GEOMETRY ALGEBRAIC C
  • [2] Aprodu M, 2007, COMMENT MATH HELV, V82, P617
  • [3] Aprodu M., 2011, GRASSMANNIANS VECTOR, V14
  • [4] Bertram A., 1998, ALGEBRAIC GEOMETRY, P259
  • [5] Bigas MTI, 2007, COLLECT MATH, V58, P193
  • [6] ON THE GIESEKER-PETRI MAP FOR RANK 2 VECTOR-BUNDLES
    BIGAS, MT
    [J]. MANUSCRIPTA MATHEMATICA, 1992, 75 (04) : 375 - 382
  • [7] The theta divisor of SUc(2,2d)(s) is very ample if C is not hyperelliptic
    Brivio, S
    Verra, A
    [J]. DUKE MATHEMATICAL JOURNAL, 1996, 82 (03) : 503 - 552
  • [8] Eisenbud D, 2002, DUKE MATH J, V112, P379
  • [9] Eisenbud D., PRYM GREEN CON UNPUB
  • [10] Farkas G, 2005, J REINE ANGEW MATH, V581, P151