The role of aerodynamic resistance in thermal remote sensing-based evapotranspiration models

被引:37
作者
Trebs, Ivonne [1 ]
Mallick, Kaniska [1 ]
Bhattarai, Nishan [2 ]
Sulis, Mauro [1 ]
Cleverly, Jamie [3 ,4 ]
Woodgate, William [5 ,6 ]
Silberstein, Richard [7 ,9 ]
Hinko-Najera, Nina [8 ]
Beringer, Jason [9 ]
Meyer, Wayne S. [10 ]
Su, Zhongbo [11 ]
Boulet, Gilles [12 ]
机构
[1] Luxembourg Inst Sci & Technol, Dept Environm Res & Innovat, Belvaux, Luxembourg
[2] Univ Michigan, Sch Environm & Sustainabil Seas, Ann Arbor, MI 48109 USA
[3] Univ Technol Sydney, Sch Life Sci, Broadway, NSW, Australia
[4] James Cook Univ, Coll Sci & Engn, Terr Ecosyst Res Network TERN, Cairns, Qld, Australia
[5] CSIRO Land & Water, Canberra, ACT, Australia
[6] Univ Queensland, Sch Earth & Environm Sci, St Lucia, Qld, Australia
[7] Edith Cowan Univ, Ctr Ecosyst Management, Joondalup, WA, Australia
[8] Univ Melbourne, Sch Ecosyst & Forest Sci, Creswick, Australia
[9] Univ Western Australia, Sch Agr & Environm, Crawley, WA, Australia
[10] Univ Adelaide, Sch Biol Sci, Adelaide, SA, Australia
[11] Univ Twente, Fac Geoinformat Sci & Earth Observat ITC, Enschede, Netherlands
[12] Univ Toulouse, INRAE, UPS, CNES,IRD,CESBIO,CNRS, Toulouse, France
基金
澳大利亚研究理事会;
关键词
Thermal remote sensing; Aerodynamic resistance; Land surface temperature; Evapotranspiration; Surface energy balance model; Aridity; RADIOMETRIC SURFACE-TEMPERATURE; BALANCE SYSTEM SEBS; ENERGY FLUX ESTIMATION; LAND-SURFACE; HEAT-FLUX; MEDITERRANEAN DRYLANDS; STABILITY CORRECTION; ROUGHNESS HEIGHT; ARIDITY GRADIENT; MONIN-OBUKHOV;
D O I
10.1016/j.rse.2021.112602
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Aerodynamic resistance (hereafter r(a)) is a preeminent variable in evapotranspiration (ET) modelling. The accurate quantification of r(a) plays a pivotal role in determining the performance and consistency of thermal remote sensing-based surface energy balance (SEB) models for estimating ET at local to regional scales. Atmospheric stability links r(a) with land surface temperature (LST) and the representation of their interactions in the SEB models determines the accuracy of ET estimates. The present study investigates the influence of r(a) and its relation to LST uncertainties on the performance of three structurally different SEB models. It used data from nine Australian OzFlux eddy covariance sites of contrasting aridity in conjunction with MODIS Terra and Aqua LST and leaf area index (LAI) products. Simulations of the sensible heat flux (H) and the latent heat flux (LE, the energy equivalent of ET in W/m(2)) from the SPARSE (Soil Plant Atmosphere and Remote Sensing Evapotranspiration), SEBS (Surface Energy Balance System) and STIC (Surface Temperature Initiated Closure) models forced with MODIS LST, LAI, and in-situ meteorological datasets were evaluated against flux observations in water-limited (arid and semi-arid) and energy-limited (mesic) ecosystems from 2011 to 2019. Our results revealed an overestimation tendency of instantaneous LE by all three models in the water-limited shrubland, woodland and grassland ecosystems by up to 50% on average, which was caused by an underestimation of H. Overestimation of LE was associated with discrepancies in r(a) retrievals under conditions of high atmospheric instability, during which uncertainties in LST (expressed as the difference between MODIS LST and in-situ LST) apparently played a minor role. On the other hand, a positive difference in LST coincided with low r(a) (high wind speeds) and caused a slight underestimation of LE at the water-limited sites. The impact of r(a) on the LE residual error was found to be of the same magnitude as the influence of LST uncertainties in the semi-arid ecosystems as indicated by variable importance in projection (VIP) coefficients from partial least squares regression above unity. In contrast, our results for the mesic forest ecosystems indicated minor dependency on r(a) for modelling LE (VIP < 0.4), which was due to a higher roughness length and lower LST resulting in the dominance of mechanically generated turbulence, thereby diminishing the importance of buoyancy production for the determination of r(a).
引用
收藏
页数:29
相关论文
共 81 条
[1]   Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery [J].
Anderson, M. C. ;
Kustas, W. P. ;
Norman, J. M. ;
Hain, C. R. ;
Mecikalski, J. R. ;
Schultz, L. ;
Gonzalez-Dugo, M. P. ;
Cammalleri, C. ;
d'Urso, G. ;
Pimstein, A. ;
Gao, F. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2011, 15 (01) :223-239
[2]   Evaluation and Aggregation Properties of Thermal Infra-Red-Based Evapotranspiration Algorithms from 100 m to the km Scale over a Semi-Arid Irrigated Agricultural Area [J].
Bahir, Malik ;
Boulet, Gilles ;
Olioso, Albert ;
Rivalland, Vincent ;
Gallego-Elvira, Belen ;
Mira, Maria ;
Rodriguez, Julio-Cesar ;
Jarlan, Lionel ;
Merlin, Olivier .
REMOTE SENSING, 2017, 9 (11)
[3]   Explaining the convector effect in canopy turbulence by means of large-eddy simulation [J].
Banerjee, Tirtha ;
De Roo, Frederik ;
Mauder, Matthias .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2017, 21 (06) :2987-3000
[4]   An introduction to the Australian and New Zealand flux tower network - OzFlux [J].
Beringer, Jason ;
Hutley, Lindsay B. ;
McHugh, Ian ;
Arndt, Stefan K. ;
Campbell, David ;
Cleugh, Helen A. ;
Cleverly, James ;
Resco de Dios, Victor ;
Eamus, Derek ;
Evans, Bradley ;
Ewenz, Cacilia ;
Grace, Peter ;
Griebel, Anne ;
Haverd, Vanessa ;
Hinko-Najera, Nina ;
Huete, Alfredo ;
Isaac, Peter ;
Kanniah, Kasturi ;
Leuning, Ray ;
Liddell, Michael J. ;
Macfarlane, Craig ;
Meyer, Wayne ;
Moore, Caitlin ;
Pendall, Elise ;
Phillips, Alison ;
Phillips, Rebecca L. ;
Prober, Suzanne M. ;
Restrepo-Coupe, Natalia ;
Rutledge, Susanna ;
Schroder, Ivan ;
Silberstein, Richard ;
Southall, Patricia ;
Yee, Mei Sun ;
Tapper, Nigel J. ;
van Gorsel, Eva ;
Vote, Camilla ;
Walker, Jeff ;
Wardlaw, Tim .
BIOGEOSCIENCES, 2016, 13 (21) :5895-5916
[5]   Regional evapotranspiration from an image-based implementation of the Surface Temperature Initiated Closure (STIC1.2) model and its validation across an aridity gradient in the conterminous US [J].
Bhattarai, Nishan ;
Mallick, Kaniska ;
Brunsell, Nathaniel A. ;
Sun, Ge ;
Jain, Meha .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2018, 22 (04) :2311-2341
[6]   Evaluating evapotranspiration rates and surface conditions using Landsat TM to estimate atmospheric resistance and surface resistance [J].
Boegh, E ;
Soegaard, H ;
Thomsen, A .
REMOTE SENSING OF ENVIRONMENT, 2002, 79 (2-3) :329-343
[7]   The SPARSE model for the prediction of water stress and evapotranspiration components from thermal infra-red data and its evaluation over irrigated and rainfed wheat [J].
Boulet, G. ;
Mougenot, B. ;
Lhomme, J. -P. ;
Fanise, P. ;
Lili-Chabaane, Z. ;
Olioso, A. ;
Bahir, M. ;
Rivalland, V. ;
Jarlan, L. ;
Merlin, O. ;
Coudert, B. ;
Er-Raki, S. ;
Lagouarde, J. -P. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2015, 19 (11) :4653-4672
[8]   An empirical expression to relate aerodynamic and surface temperatures for use within single-source energy balance models [J].
Boulet, G. ;
Olioso, A. ;
Ceschia, E. ;
Marloie, O. ;
Coudert, B. ;
Rivalland, V. ;
Chirouze, J. ;
Chehbouni, G. .
AGRICULTURAL AND FOREST METEOROLOGY, 2012, 161 :148-155
[9]   Biogeography of the Australian monsoon tropics [J].
Bowman, D. M. J. S. ;
Brown, G. K. ;
Braby, M. F. ;
Brown, J. R. ;
Cook, L. G. ;
Crisp, M. D. ;
Ford, F. ;
Haberle, S. ;
Hughes, J. ;
Isagi, Y. ;
Joseph, L. ;
McBride, J. ;
Nelson, G. ;
Ladiges, P. Y. .
JOURNAL OF BIOGEOGRAPHY, 2010, 37 (02) :201-216
[10]   Aspects of bulk atmospheric boundary layer similarity under free-convective conditions [J].
Brutsaert, W .
REVIEWS OF GEOPHYSICS, 1999, 37 (04) :439-451