Thermodynamic and Kinetic Studies for the Adsorption of Fe(III) and Ni(II) Ions From Aqueous Solution Using Natural Bentonite

被引:31
作者
Alandis, N. M. [1 ]
Aldayel, O. A. [2 ]
Mekhemer, W. K. [1 ]
Hefne, J. A. [2 ]
Jokhab, H. A. [2 ]
机构
[1] King Saud Univ, Dept Chem, Coll Sci, Riyadh 11452, Saudi Arabia
[2] King Abdulaziz City Sci & Technol, Riyadh, Saudi Arabia
关键词
Adsorption; heavy metals; isotherms; kinetics; natural bentonite; thermodynamics; wastewaters; HEAVY-METALS; COMPETITIVE ADSORPTION; SINGLE-COMPONENT; WASTE-WATER; REMOVAL; SORPTION; CADMIUM; COPPER; MONTMORILLONITE; CHROMIUM(VI);
D O I
10.1080/01932690903294097
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, the adsorption behavior of natural bentonite with respect to Fe(III) and Ni(II) has been studied in order to consider its application to purity metal finishing wastewaters. During the adsorption process, batch technique is used, and the effects of pH, bentoite amount, temperature, heavy metal concentration, bentonite treatment (calcinations of natural bentonite at 700 degrees C, washing by deionized water to remove the excess salt from bentonite surface), and agitation time on adsorption efficiency are studied. The washed and calcined bentonite samples were labeled by WB and CB, respectively. The pH-dependence of Fe(III) and Ni(II) sorption on the bentonite is significantly more noticeable, indicating a major contribution of surface complexation at the edge sites. It was determined that adsorption of Fe(III) and Ni(II) is well fitted by the second order reaction kinetic. Furthermore, the sorption rate of Fe(III) was higher than the sorption rate of Ni(II). Adsorption of Fe(III) and Ni(II) on NB appeared to follow Langmuir isotherm. In addition, calculated and experimental adsorbed amounts of Fe(III) by the unit NB mass are very higher than Ni(II). The paper also discusses the thermodynamic parameters of the adsorption (the Gibbs free energy, entropy, and enthalpy). Our results demonstrate that the adsorption process was spontaneous and endothermic under natural conditions. Also the adsorption capacity of bentonite for Fe(III) Ni(II) and increases with increased bentonite dose. According to the equilibrium studies, the selectivity sequence can be given as Fe(III)Ni(II). The adsorbed amount of Fe(III) and Ni(II) on washed bentonite (WB) were very higher compared to NB and CB. Our results show that bentonite could especially WB be considered as a potential adsorbent for Fe(III) and Ni(II) removal from aqueous solutions.
引用
收藏
页码:1526 / 1534
页数:9
相关论文
共 55 条
[1]   The removal of chromium(VI) from aqueous solutions by Fagus orientalis L. [J].
Acar, FN ;
Malkoc, E .
BIORESOURCE TECHNOLOGY, 2004, 94 (01) :13-15
[2]   Adsorption studies on Citrus reticulata (fruit peel of orange):: removal and recovery of Ni(II) from electroplating wastewater [J].
Ajmal, M ;
Rao, RAK ;
Ahmad, R ;
Ahmad, J .
JOURNAL OF HAZARDOUS MATERIALS, 2000, 79 (1-2) :117-131
[3]   ISOTHERM ANALYSES FOR SINGLE-COMPONENT AND MULTICOMPONENT METAL SORPTION ONTO LIGNITE [J].
ALLEN, SJ ;
BROWN, PA .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 1995, 62 (01) :17-24
[4]   Purification of chromium(VI) finishing wastewaters using calcined and uncalcined Mg-Al-CO3-hydrotalcite [J].
Alvarez-Ayuso, E ;
Nugteren, HW .
WATER RESEARCH, 2005, 39 (12) :2535-2542
[5]  
Appel C, 2002, J ENVIRON QUAL, V31, P581, DOI 10.2134/jeq2002.0581
[6]   Adsorption of lead and cadmium ions from aqueous solution to the montmorillonite/water interface [J].
Barbier, F ;
Duc, G ;
Petit-Ramel, M .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2000, 166 (1-3) :153-159
[7]   Influence of acid activation on adsorption of Ni(II) and Cu(II) on kaolinite and montmorillonite: Kinetic and thermodynamic study [J].
Bhattacharyya, Krishna G. ;
Sen Gupta, Susmita .
CHEMICAL ENGINEERING JOURNAL, 2008, 136 (01) :1-13
[8]   Kaolinite and montmorillonite as adsorbents for Fe(III), Co(II) and Ni(II) in aqueous medium [J].
Bhattacharyya, Krishna G. ;
Sen Gupta, Susmita .
APPLIED CLAY SCIENCE, 2008, 41 (1-2) :1-9
[9]   Removal of heavy metals by adsorbent prepared from pyrolyzed coffee residues and clay [J].
Boonamnuayvitaya, V ;
Chaiya, CY ;
Tanthapanichakoon, W ;
Jarudilokkul, S .
SEPARATION AND PURIFICATION TECHNOLOGY, 2004, 35 (01) :11-22
[10]   Modeling the acid-base surface chemistry of montmorillonite [J].
Bourg, Ian C. ;
Sposito, Garrison ;
Bourg, Alain C. M. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 312 (02) :297-310