Low frequency of CHEK2 1100delC allele in Australian multiple-case breast cancer families:: functional analysis in heterozygous individuals

被引:32
作者
Jekimovs, CR
Chen, X
Arnold, J
Gatei, M
Richard, DJ
Spurdle, AB
Khanna, KK
Chenevix-Trench, G
机构
[1] Queensland Inst Med Res, Div Canc & Cell Biol, Brisbane, Qld 4029, Australia
[2] Univ Queensland, Sch Med, Cent Clin Div, Brisbane, Qld 4072, Australia
[3] Peter MacCallum Canc Ctr, Melbourne, Vic 3002, Australia
基金
英国医学研究理事会;
关键词
familial breast cancer; CHEK2; germline variation; susceptibility; CHK2; DNA damage response;
D O I
10.1038/sj.bjc.6602381
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
A protein-truncating variant of CHEK2, 1100delC, is associated with a moderate increase in breast cancer risk. We have determined the prevalence of this allele in index cases from 300 Australian multiple-case breast cancer families, 95% of which had been found to be negative for mutations in BRCA1 and BRCA2. Only two (0.6%) index cases heterozygous for the CHEK2 mutation were identified. All available relatives in these two families were genotyped, but there was no evidence of co-segregation between the CHEK2 variant and breast cancer. Lymphoblastoid cell lines established from a heterozygous carrier contained approximately 20% of the CHEK2 1100delC mRNA relative to wild-type CHEK2 transcript. However, no truncated CHK2 protein was detectable. Analyses of expression and phosphorylation of wild-type CHK2 suggest that the variant is likely to act by haploinsufficiency. Analysis of CDC25A degradation, a downstream target of CHK2, suggests that some compensation occurs to allow normal degradation of CDC25A. Such compensation of the 1100delC defect in CHEK2 might explain the rather low breast cancer risk associated with the CHEK2 variant, compared to that associated with truncating mutations in BRCA1 or BRCA2.
引用
收藏
页码:784 / 790
页数:7
相关论文
共 32 条
[1]   Phosphorylation of threonine 68 promotes oligomerization and autophosphorylation of the Chk2 protein kinase via the forkhead-associated domain [J].
Ahn, JY ;
Li, XH ;
Davis, HL ;
Canman, CE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (22) :19389-19395
[2]   Enhanced phosphorylation of p53 by ATN in response to DNA damage [J].
Banin, S ;
Moyal, L ;
Shieh, SY ;
Taya, Y ;
Anderson, CW ;
Chessa, L ;
Smorodinsky, NI ;
Prives, C ;
Reiss, Y ;
Shiloh, Y ;
Ziv, Y .
SCIENCE, 1998, 281 (5383) :1674-1677
[3]   Chk1 and Chk2 kinases in checkpoint control and cancer [J].
Bartek, J ;
Lukas, J .
CANCER CELL, 2003, 3 (05) :421-429
[4]   Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome [J].
Bell, DW ;
Varley, JM ;
Szydlo, TE ;
Kang, DH ;
Wahrer, DCR ;
Shannon, KE ;
Lubratovich, M ;
Verselis, SJ ;
Isselbacher, KJ ;
Fraumeni, JF ;
Birch, JM ;
Li, FP ;
Garber, JE ;
Haber, DA .
SCIENCE, 1999, 286 (5449) :2528-2531
[5]   A VERSATILE VECTOR FOR GENE AND OLIGONUCLEOTIDE TRANSFER INTO CELLS IN CULTURE AND IN-VIVO - POLYETHYLENIMINE [J].
BOUSSIF, O ;
LEZOUALCH, F ;
ZANTA, MA ;
MERGNY, MD ;
SCHERMAN, D ;
DEMENEIX, B ;
BEHR, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7297-7301
[6]   Excess risk for contralateral breast cancer in CHEK2*1100delC germline mutation carriers [J].
Broeks, A ;
de Witte, L ;
Nooijen, A ;
Huseinovic, A ;
Klijn, JGM ;
van Leeuwen, FE ;
Russell, NS ;
van't Veer, LJ .
BREAST CANCER RESEARCH AND TREATMENT, 2004, 83 (01) :91-93
[7]   Activation of the ATM kinase by ionizing radiation and phosphorylation of p53 [J].
Canman, CE ;
Lim, DS ;
Cimprich, KA ;
Taya, Y ;
Tamai, K ;
Sakaguchi, K ;
Appella, E ;
Kastan, MB ;
Siliciano, JD .
SCIENCE, 1998, 281 (5383) :1677-1679
[8]   Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway [J].
Chaturvedi, P ;
Eng, WK ;
Zhu, Y ;
Mattern, MR ;
Mishra, R ;
Hurle, MR ;
Zhang, XL ;
Annan, RS ;
Lu, Q ;
Faucette, LF ;
Scott, GF ;
Li, XT ;
Carr, SA ;
Johnson, RK ;
Winkler, JD ;
Zhou, BBS .
ONCOGENE, 1999, 18 (28) :4047-4054
[9]  
Chehab NH, 2000, GENE DEV, V14, P278
[10]  
Chenevix-Trench G, 2002, JNCI-J NATL CANCER I, V94, P205, DOI 10.1093/jnci/94.3.205