Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials

被引:175
作者
Khanikaev, A. B. [1 ,2 ]
Arju, N. [3 ]
Fan, Z. [3 ]
Purtseladze, D. [3 ]
Lu, F. [4 ]
Lee, J. [4 ]
Sarriugarte, P. [5 ]
Schnell, M. [5 ]
Hillenbrand, R. [5 ]
Belkin, M. A. [4 ]
Shvets, G. [3 ]
机构
[1] CUNY, Queens Coll, Dept Phys, Queens, NY 11367 USA
[2] CUNY, Grad Ctr, Queens, NY 11367 USA
[3] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[4] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78758 USA
[5] CIC nanoGUNE Consolider, Tolosa Hiribidea 76, E-20018 Donostia San Sebastian, Spain
关键词
PLASMONIC NANOANTENNAS; FANO RESONANCES; METASURFACES; SPECTROSCOPY; LIGHT; NANOSTRUCTURES; TRANSMISSION; ANTENNAS; MODES;
D O I
10.1038/ncomms12045
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Optical activity and circular dichroism are fascinating physical phenomena originating from the interaction of light with chiral molecules or other nano objects lacking mirror symmetries in three-dimensional (3D) space. While chiral optical properties are weak in most of naturally occurring materials, they can be engineered and significantly enhanced in synthetic optical media known as chiral metamaterials, where the spatial symmetry of their building blocks is broken on a nanoscale. Although originally discovered in 3D structures, circular dichroism can also emerge in a two-dimensional (2D) metasurface. The origin of the resulting circular dichroism is rather subtle, and is related to non-radiative (Ohmic) dissipation of the constituent metamolecules. Because such dissipation occurs on a nanoscale, this effect has never been experimentally probed and visualized. Using a suite of recently developed nanoscale-measurement tools, we establish that the circular dichroism in a nanostructured metasurface occurs due to handedness-dependent Ohmic heating.
引用
收藏
页数:8
相关论文
共 43 条
[1]   On Chip Plasmonic Monopole Nano-Antennas and Circuits [J].
Adato, Ronen ;
Yanik, Ahmet A. ;
Altug, Hatice .
NANO LETTERS, 2011, 11 (12) :5219-5226
[2]   Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots [J].
Alonso-Gonzalez, P. ;
Albella, P. ;
Schnell, M. ;
Chen, J. ;
Huth, F. ;
Garcia-Etxarri, A. ;
Casanova, F. ;
Golmar, F. ;
Arzubiaga, L. ;
Hueso, L. E. ;
Aizpurua, J. ;
Hillenbrand, R. .
NATURE COMMUNICATIONS, 2012, 3
[3]   Real-Space Mapping of Fano Interference in Plasmonic Metamolecules [J].
Alonso-Gonzalez, Pablo ;
Schnell, Martin ;
Sarriugarte, Paulo ;
Sobhani, Heidar ;
Wu, Chihhui ;
Arju, Nihal ;
Khanikaev, Alexander ;
Golmar, Federico ;
Albella, Pablo ;
Arzubiaga, Libe ;
Casanova, Felix ;
Hueso, Luis E. ;
Nordlander, Peter ;
Shvets, Gennady ;
Hillenbrand, Rainer .
NANO LETTERS, 2011, 11 (09) :3922-3926
[4]   Optical Realization of Double-Continuum Fano Interference and Coherent Control in Plasmonic Metasurfaces [J].
Arju, Nihal ;
Ma, Tzuhsuan ;
Khanikaev, Alexander ;
Purtseladze, David ;
Shvets, Gennady .
PHYSICAL REVIEW LETTERS, 2015, 114 (23)
[5]  
Bonner WA, 2000, CHIRALITY, V12, P114
[6]  
Bose J.C., 1898, P ROY SOC, V63, P146, DOI DOI 10.1098/RSPL.1898.0019
[7]   Monopole antenna arrays for optical trapping, spectroscopy, and sensing [J].
Cetin, A. E. ;
Yanik, Ahmet Ali ;
Yilmaz, Cihan ;
Somu, Sivasubramanian ;
Busnaina, Ahmed ;
Altug, Hatice .
APPLIED PHYSICS LETTERS, 2011, 98 (11)
[8]   Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor [J].
Dazzi, A ;
Prazeres, R ;
Glotin, E ;
Ortega, JM .
OPTICS LETTERS, 2005, 30 (18) :2388-2390
[9]  
Fan SH, 2003, J OPT SOC AM A, V20, P569, DOI 10.1364/JOSAA.20.000569
[10]   Asymmetric propagation of electromagnetic waves through a planar chiral structure [J].
Fedotov, V. A. ;
Mladyonov, P. L. ;
Prosvirnin, S. L. ;
Rogacheva, A. V. ;
Chen, Y. ;
Zheludev, N. I. .
PHYSICAL REVIEW LETTERS, 2006, 97 (16)