Superstrengthening Bi2Te3 through Nanotwinning

被引:51
|
作者
Li, Guodong [1 ,2 ]
Aydemir, Umut [2 ,3 ]
Morozov, Sergey I. [4 ]
Wood, Max [2 ]
An, Qi [5 ]
Zhai, Pengcheng [1 ]
Zhang, Qingjie [1 ]
Goddard, William A., III [6 ]
Snyder, G. Jeffrey [2 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Hubei, Peoples R China
[2] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[3] Koc Univ, Dept Chem, TR-34450 Istanbul, Turkey
[4] South Ural State Univ, Dept Comp Simulat & Nanotechnol, Chelyabinsk 454080, Russia
[5] Univ Nevada, Dept Chem & Mat Engn, Reno, NV 89557 USA
[6] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA
基金
中国博士后科学基金; 美国国家航空航天局;
关键词
TOTAL-ENERGY CALCULATIONS; TOPOLOGICAL INSULATOR; MECHANICAL-PROPERTIES; BISMUTH-TELLURIDE; IDEAL STRENGTH; PERFORMANCE; EFFICIENCY; BANDS; CONVERGENCE; BOUNDARIES;
D O I
10.1103/PhysRevLett.119.085501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bismuth telluride (Bi2Te3) based thermoelectric (TE) materials have been commercialized successfully as solid-state power generators, but their low mechanical strength suggests that these materials may not be reliable for long-term use in TE devices. Here we use density functional theory to show that the ideal shear strength of Bi2Te3 can be significantly enhanced up to 215% by imposing nanoscale twins. We reveal that the origin of the low strength in single crystalline Bi2Te3 is the weak van derWaals interaction between the Te1 coupling two Te1-Bi-Te2-Bi-Te1 five-layer quint substructures. However, we demonstrate here a surprising result that forming twin boundaries between the Te1 atoms of adjacent quints greatly strengthens the interaction between them, leading to a tripling of the ideal shear strength in nanotwinned Bi2Te3 (0.6 GPa) compared to that in the single crystalline material (0.19 GPa). This grain boundary engineering strategy opens a new pathway for designing robust Bi2Te3 TE semiconductors for high-performance TE devices.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Bi2Te3-Te nanocomposite formed by epitaxial growth of Bi2Te3 sheets on Te rod
    Deng, Yuan
    Cui, Chang-Wei
    Zhang, Ni-La
    Ji, Tian-Hao
    Yang, Qing-Lin
    Guo, Lin
    JOURNAL OF SOLID STATE CHEMISTRY, 2006, 179 (05) : 1575 - 1580
  • [42] Electron transmission through atomic steps of Bi2Se3 and Bi2Te3 surfaces
    Kobayashi, Katsuyoshi
    PHYSICAL REVIEW B, 2011, 84 (20)
  • [43] Solvothermal synthesis of Bi2Te3 nanotubes by the interdiffusion of Bi and Te metals
    Kim, Sook Hyun
    Park, Byung Ki
    MATERIALS LETTERS, 2010, 64 (08) : 938 - 941
  • [44] Electropolishing of Bi2Te3 based alloys
    Tewari, KC
    Gandotra, VK
    Padmavati, MVG
    Singh, A
    Vedeshwar, AG
    MATERIALS CHEMISTRY AND PHYSICS, 2001, 72 (01) : 72 - 76
  • [45] Bulk band structure of Bi2Te3
    Michiardi, Matteo
    Aguilera, Irene
    Bianchi, Marco
    de Carvalho, Vagner Eustaquio
    Ladeira, Luiz Orlando
    Teixeira, Nayara Gomes
    Soares, Edmar Avellar
    Friedrich, Christoph
    Bluegel, Stefan
    Hofmann, Philip
    PHYSICAL REVIEW B, 2014, 90 (07):
  • [46] CRYSTALLOGRAPHIC ANGLES FOR STOICHIOMETRIC BI2TE3
    MITCHELL, WL
    QUEENER, CA
    TRANSACTIONS OF THE METALLURGICAL SOCIETY OF AIME, 1965, 233 (09): : 1793 - &
  • [47] INVESTIGATION OF THE HOLE SPECTRUM OF BI2TE3
    KUDINOV, EK
    SOVIET PHYSICS-SOLID STATE, 1961, 3 (02): : 227 - 233
  • [48] Preparation of Bi2Te3 films by electrodeposition
    Miyazaki, Y
    Kajitani, T
    JOURNAL OF CRYSTAL GROWTH, 2001, 229 (01) : 542 - 546
  • [49] Bi2Te3 photoconductive detectors on Si
    Liu, Juanjuan
    Li, Yaoyao
    Song, Yuxin
    Ma, Yingjie
    Chen, Qimiao
    Zhu, Zhongyunshen
    Lu, Pengfei
    Wang, Shumin
    APPLIED PHYSICS LETTERS, 2017, 110 (14)
  • [50] PREPARATION AND ELECTRICAL PROPERTIES OF BI2TE3
    HARMAN, TC
    MILLER, SE
    GOERING, HL
    PHYSICAL REVIEW, 1955, 100 (04): : 1262 - 1262