Multisensor approach to land use and land cover mapping in Brazilian Amazon

被引:15
作者
Prudente, Victor Hugo Rohden [1 ,2 ]
Skakun, Sergii [2 ,3 ]
Oldoni, Lucas Volochen [1 ]
Xaud, Haron A. M. [4 ]
Xaud, Maristela R. [4 ]
Adami, Marcos [1 ]
Sanches, Ieda Del ' Arco [1 ]
机构
[1] Natl Inst Space Res, Earth Observat & Geoinformat Div, BR-12227010 Sao Jose Dos Campos, SP, Brazil
[2] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA
[3] NASA Goddard Space Flight Ctr Code 619, Greenbelt, MD 20771 USA
[4] Brazilian Agr Res Corp, Embrapa Roraima, BR-69301970 Boa Vista, RR, Brazil
关键词
Classification; Sentinel images; Random Forest; Multilayer Perceptron; t-Distributed Stochastic Neighbor Embedding; Roraima state; CLOUD COVER; FOREST; CLASSIFICATION; INTEGRATION; SENTINEL-1; SAR; ACCURACY; FUSION; REGION; IMAGES;
D O I
10.1016/j.isprsjprs.2022.04.025
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Remote sensing has an important role in the Land Use and Land Cover (LULC) mapping process worldwide. Combining spaceborne optical and microwave data is essential for accurate classification in areas with frequent cloud cover, such as tropical regions. In this study, we investigate the possible improvements, when SAR data is incorporated into the classification process along with optical data. We used MSI/Sentinel-2 and SAR/Sentinel-1 to provide LULC mapping in the Roraima State, Brazil, in 2019. This State is located in a tropical area, where the cloud cover is frequent over the year. Cloud cover becomes substantial, especially during the May-August period when crops are grown. Twenty-nine scenarios involving a combination of optical-and SAR-based features, as well as times of data acquisition, were considered in this study. Our results showed that optical or SAR data used individually are not enough to provide accurate LULC mapping. The best results in terms of overall accuracy (OA) were achieved using metrics of multi-temporal surface reflectance and vegetation index (VI) for optical imagery, and values of backscatter coefficient in different polarizations and their ratios yielding an OA of 86.41 +/- 1.74%. Analysis of three periods of data (January to April, May to August, and September to December) used for classification allowed us to identify the optimal period for distinguishing specific classes. When comparing our LULC map with a LULC product derived within the MapBiomas project we observed that our method per -formed better to map annual and perennial crops and water classes. Our methodology provides a more accurate LULC for the Roraima State, and the proposed technique can be applied to benefit other regions that are affected by persistent cloud cover.
引用
收藏
页码:95 / 109
页数:15
相关论文
共 80 条
[21]   Reconciling agriculture, carbon and biodiversity in a savannah transformation frontier [J].
Estes, L. D. ;
Searchinger, T. ;
Spiegel, M. ;
Tian, D. ;
Sichinga, S. ;
Mwale, M. ;
Kehoe, L. ;
Kuemmerle, T. ;
Berven, A. ;
Chaney, N. ;
Sheffield, J. ;
Wood, E. F. ;
Caylor, K. K. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2016, 371 (1703)
[22]   Google Earth Engine: Planetary-scale geospatial analysis for everyone [J].
Gorelick, Noel ;
Hancher, Matt ;
Dixon, Mike ;
Ilyushchenko, Simon ;
Thau, David ;
Moore, Rebecca .
REMOTE SENSING OF ENVIRONMENT, 2017, 202 :18-27
[23]   Analyzing Temporal and Spatial Characteristics of Crop Parameters Using Sentinel-1 Backscatter Data [J].
Harfenmeister, Katharina ;
Spengler, Daniel ;
Weltzien, Cornelia .
REMOTE SENSING, 2019, 11 (13)
[24]   Array programming with NumPy [J].
Harris, Charles R. ;
Millman, K. Jarrod ;
van der Walt, Stefan J. ;
Gommers, Ralf ;
Virtanen, Pauli ;
Cournapeau, David ;
Wieser, Eric ;
Taylor, Julian ;
Berg, Sebastian ;
Smith, Nathaniel J. ;
Kern, Robert ;
Picus, Matti ;
Hoyer, Stephan ;
van Kerkwijk, Marten H. ;
Brett, Matthew ;
Haldane, Allan ;
del Rio, Jaime Fernandez ;
Wiebe, Mark ;
Peterson, Pearu ;
Gerard-Marchant, Pierre ;
Sheppard, Kevin ;
Reddy, Tyler ;
Weckesser, Warren ;
Abbasi, Hameer ;
Gohlke, Christoph ;
Oliphant, Travis E. .
NATURE, 2020, 585 (7825) :357-362
[25]   Feature Extraction and Selection of Sentinel-1 Dual-Pol Data for Global-Scale Local Climate Zone Classification [J].
Hu, Jingliang ;
Ghamisi, Pedram ;
Zhu, Xiao Xiang .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (09)
[26]   Monitoring housing rental prices based on social media:An integrated approach of machine-learning algorithms and hedonic modeling to inform equitable housing policies [J].
Hu, Lirong ;
He, Shenjing ;
Han, Zixuan ;
Xiao, He ;
Su, Shiliang ;
Weng, Min ;
Cai, Zhongliang .
LAND USE POLICY, 2019, 82 :657-673
[27]  
IBGE I.B. de G, 2018, Conheca cidades e estados do Brasil Internet
[28]  
IBGE I.B. de G. e E, 2017, MON COB US TERR BRAS, V1st
[29]   Improved Early Crop Type Identification By Joint Use of High Temporal Resolution SAR And Optical Image Time Series [J].
Inglada, Jordi ;
Vincent, Arthur ;
Arias, Marcela ;
Marais-Sicre, Claire .
REMOTE SENSING, 2016, 8 (05)
[30]   Random forest classification for mangrove land cover mapping using Landsat 5 TM and ALOS PALSAR imageries [J].
Jhonnerie, Romie ;
Siregar, Vincentius P. ;
Nababan, Bisman ;
Prasetyo, Lilik Budi ;
Wouthuyzen, Sam .
1ST INTERNATIONAL SYMPOSIUM ON LAPAN-IPB SATELLITE (LISAT) FOR FOOD SECURITY AND ENVIRONMENTAL MONITORING, 2015, 24 :215-221