COVID-19 Classification Using Medical Image Synthesis by Generative Adversarial Networks

被引:5
作者
Abirami, R. Nandhini [1 ]
Vincent, P. M. Durai Raj [1 ]
Rajinikanth, Venkatesan [2 ]
Kadry, Seifedine [3 ]
机构
[1] Vellore Inst Technol, Sch Informat Technol & Engn, Vellore 632014, Tamil Nadu, India
[2] St Josephs Coll Engn, Dept Elect & Instrumentat Engn, Chennai 600119, Tamil Nadu, India
[3] Noroff Univ Coll, Dept Appl Data Sci, Oslo, Norway
关键词
COVID-19; corona virus; GAN; deep learning; medical image synthesis; coronavirus classification; PNEUMONIA; FUSION;
D O I
10.1142/S0218488522400128
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The outbreak of novel coronavirus disease 2019, also called COVID-19, in Wuhan, China, began in December 2019. Since its outbreak, infectious disease has rapidly spread across the globe. The testing methods adopted by the medical practitioners gave false negatives, which is a big challenge. Medical imaging using deep learning can be adopted to speed up the testing process and avoid false negatives. This work proposes a novel approach, COVID-19 GAN, to perform coronavirus disease classification using medical image synthesis by a generative adversarial network. Detecting coronavirus infections from the chest X-ray images is very crucial for its early diagnosis and effective treatment. To boost the performance of the deep learning model and improve the accuracy of classification, synthetic data augmentation is performed using generative adversarial networks. Here, the available COVID-19 positive chest X-ray images are fed into the styleGAN2 model. The styleGAN model is trained, and the data necessary for training the deep learning model for coronavirus classification is generated. The generated COVID-19 positive chest X-ray images and the normal chest X-ray images are fed into the deep learning model for training. An accuracy of 99.78% is achieved in classifying chest X-ray images using CNN binary classifier model.
引用
收藏
页码:385 / 401
页数:17
相关论文
共 46 条
[1]   Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network [J].
Abbas, Asmaa ;
Abdelsamea, Mohammed M. ;
Gaber, Mohamed Medhat .
APPLIED INTELLIGENCE, 2021, 51 (02) :854-864
[2]   Deep transfer learning-based automated detection of COVID-19 from lung CT scan slices [J].
Ahuja, Sakshi ;
Panigrahi, Bijaya Ketan ;
Dey, Nilanjan ;
Rajinikanth, Venkatesan ;
Gandhi, Tapan Kumar .
APPLIED INTELLIGENCE, 2021, 51 (01) :571-585
[3]  
[Anonymous], J INFECTION
[4]   Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks [J].
Apostolopoulos, Ioannis D. ;
Mpesiana, Tzani A. .
PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2020, 43 (02) :635-640
[5]  
Asif S, 2020, MEDRXIV PREPRINT SER, DOI DOI 10.1109/ICCC51575.2020.9344870
[6]  
Barstugan M., 2020, Coronavirus (COVID-19) classification using CT images by machine learning methods
[7]  
Bukhari S. U. K., 2020, DIAGNOSTIC EVALUATIO
[8]   Recent Advances of Generative Adversarial Networks in Computer Vision [J].
Cao, Yang-Jie ;
Jia, Li-Li ;
Chen, Yong-Xia ;
Lin, Nan ;
Yang, Cong ;
Zhang, Bo ;
Liu, Zhi ;
Li, Xue-Xiang ;
Dai, Hong-Hua .
IEEE ACCESS, 2019, 7 :14985-15006
[9]   Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study [J].
Chen, Nanshan ;
Zhou, Min ;
Dong, Xuan ;
Qu, Jieming ;
Gong, Fengyun ;
Han, Yang ;
Qiu, Yang ;
Wang, Jingli ;
Liu, Ying ;
Wei, Yuan ;
Xia, Jia'an ;
Yu, Ting ;
Zhang, Xinxin ;
Zhang, Li .
LANCET, 2020, 395 (10223) :507-513
[10]  
Chung MS, 2020, EUR RADIOL, V30, P2182, DOI [10.1148/radiol.2020200230, 10.1007/s00330-019-06574-1]