UNSUPERVISED FEATURE SELECTION WITH LOCAL STRUCTURE LEARNING

被引:0
|
作者
Yang, Sheng [1 ,2 ]
Nie, Feiping [1 ,2 ]
Li, Xuelong [3 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Ctr Opt IMagery Anal & Learning OPTIMAL, Xian 710072, Shaanxi, Peoples R China
[3] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr Opt IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China
来源
2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2018年
基金
中国国家自然科学基金;
关键词
Graph-based; two stages; similarity matrix; connected components; feature selection; FRAMEWORK;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Conventional graph-based unsupervised feature selection approaches carry out the feature selection requiring two stages: first, constructing the data similarity matrix and next performing feature selection. In this way, the similarity matrix is invariably kept unchanged, totally separated from the process of feature selection and the performance of feature selection highly depends on the initially constructed similarity matrix. In order to address this problem, a novel unsupervised feature selection method is proposed in this paper where constructing similarity matrix and performing feature selection are together incorporated into a coherent model. Besides, the constructed similarity matrix has k connected components (k is the number of data clusters). At last, five state-of-the-art unsupervised feature selection methods are compared to validate the effectiveness of the proposed method.
引用
收藏
页码:3398 / 3402
页数:5
相关论文
共 50 条
  • [1] Unsupervised Spectral Feature Selection with local structure learning
    Zhang, Shichao
    Fang, Yue
    Lei, Cong
    Li, Yangding
    Hu, Rongyao
    Li, Yonggang
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG KNOWLEDGE (IEEE ICBK 2017), 2017, : 303 - 308
  • [2] Unsupervised feature selection based on local structure learning
    Liu, Yanbei
    Geng, Lei
    Zhang, Fang
    Wu, Jun
    Zhang, Liang
    Xiao, Zhitao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (45-46) : 34571 - 34585
  • [3] Unsupervised feature selection based on local structure learning
    Yanbei Liu
    Lei Geng
    Fang Zhang
    Jun Wu
    Liang Zhang
    Zhitao Xiao
    Multimedia Tools and Applications, 2020, 79 : 34571 - 34585
  • [4] An Ideal Local Structure Learning for Unsupervised Feature Selection
    Liu, Yanbei
    Liu, Kaihua
    Liu, Deliang
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2018, 423 : 777 - 782
  • [5] Unsupervised feature selection via local structure learning and sparse learning
    Cong Lei
    Xiaofeng Zhu
    Multimedia Tools and Applications, 2018, 77 : 29605 - 29622
  • [6] Unsupervised feature selection via local structure learning and sparse learning
    Lei, Cong
    Zhu, Xiaofeng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (22) : 29605 - 29622
  • [7] Feature selection for unsupervised learning through local learning
    Yao, Jin
    Mao, Qi
    Goodison, Steve
    Mai, Volker
    Sun, Yijun
    PATTERN RECOGNITION LETTERS, 2015, 53 : 100 - 107
  • [8] Unsupervised Feature Selection via Local Structure Learning and Self-representation
    Zhang, Shichao
    Lei, Cong
    Fang, Yue
    Li, Yangding
    Hu, Rongyao
    Hu, Xiaoyi
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG KNOWLEDGE (IEEE ICBK 2017), 2017, : 297 - 302
  • [9] Unsupervised Feature Selection with Adaptive Structure Learning
    Du, Liang
    Shen, Yi-Dong
    KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 209 - 218
  • [10] Local and Global Discriminative Learning for Unsupervised Feature Selection
    Du, Liang
    Shen, Zhiyong
    Li, Xuan
    Zhou, Peng
    Shen, Yi-Dong
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2013, : 131 - 140