Theoretical calculations of the mean escape depth of secondary electron emission from compound semiconductor materials

被引:12
作者
Hussain, A. [1 ,2 ]
Yang, L. H. [1 ,2 ]
Zou, Y. B. [3 ]
Mao, S. F. [4 ]
Da, B. [5 ]
Li, H. M. [6 ]
Ding, Z. J. [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China
[3] Xinjiang Normal Univ, Sch Phys & Elect Engn, Urumqi 830054, Xinjiang, Peoples R China
[4] Univ Sci & Technol China, Dept Engn & Appl Phys, Hefei 230026, Anhui, Peoples R China
[5] Natl Inst Mat Sci, Res & Serv Div Mat Data & Integrated Syst MaDIS, Ctr Mat Res Informat Integrat CMI2, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
[6] Univ Sci & Technol China, Super Computat Ctr, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
MONTE-CARLO-SIMULATION; SCATTERING; SOLIDS; IMAGES; YIELD; SPECTROSCOPY; MODEL;
D O I
10.1063/1.5144721
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have performed a systematic Monte Carlo simulation of primary and secondary electron trajectories to predicate the mean escape depth of secondary electron emission for six compound semiconductors, i.e., TiN, VN, GaAs, InAs, InSb, and PbS. Mott's cross section is used for the description of electron elastic scattering in the simulation model, and the full-Penn's dielectric function approach is adopted for the modeling of electron inelastic scattering, where the energy loss function obtained with the optical data is contributed from phonon excitation, interband transition of the loosely bound valance electrons, and inner-shell electron excitations. We have calculated the excitation depth distribution function, emission depth distribution function, and their combining effect in probability depth distribution function at different primary energies for the excited and emitted secondary electrons in these materials. The calculation leads to the primary energy dependence of mean escape depth whose values are found in the range of 0.4-1.4nm for these materials.
引用
收藏
页数:11
相关论文
共 66 条
[1]   Electrical and optical properties of InSb/GaAs QDSC for photovoltaic [J].
Aissat, A. ;
Benyettou, F. ;
Vilcot, J. P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (30) :19518-19524
[2]   LOW-ENERGY-ELECTRON TRANSPORT IN ALKALI-HALIDES [J].
AKKERMAN, A ;
BOUTBOUL, T ;
BRESKIN, A ;
CHECHIK, R ;
GIBREKHTERMAN, A .
JOURNAL OF APPLIED PHYSICS, 1994, 76 (08) :4656-4662
[3]  
[Anonymous], 1998, HDB OPTICAL CONSTANT
[4]  
*ASTM, 2001, E67398 ASTM, P735
[5]   Secondary Electron Emission on Space Materials: Evaluation of the Total Secondary Electron Yield From Surface Potential Measurements [J].
Balcon, N. ;
Payan, D. ;
Belhaj, M. ;
Tondu, T. ;
Inguimbert, V. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2012, 40 (02) :282-290
[6]   26.1% thin-film GaAs solar cell using epitaxial lift-off [J].
Bauhuis, G. J. ;
Mulder, P. ;
Haverkamp, E. J. ;
Huijben, J. C. C. M. ;
Schermer, J. J. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (09) :1488-1491
[7]   Use of Monte Carlo modeling to aid interpretation and quantification of the low energy-loss electron yield at low primary energies [J].
Bonet, Christopher ;
Pratt, Andrew ;
El-Gomati, Mohamed M. ;
Matthew, Jim A. D. ;
Tear, Steven P. .
MICROSCOPY AND MICROANALYSIS, 2008, 14 (05) :439-450
[8]  
Dapor M., 2010, ELECT BEAM INTERACTI
[9]  
DEKKER AJ, 1958, SOLID STATE PHYS, V6, P251
[10]  
DESCLAUX JP, 1977, COMPUT PHYS COMMUN, V13, P71