Stability of differential susceptibility and infectivity epidemic models

被引:23
作者
Bonzi, B. [3 ]
Fall, A. A. [1 ,2 ,4 ]
Iggidr, A. [1 ,2 ]
Sallet, G. [1 ,2 ]
机构
[1] Univ Paul Verlaine, INRIA Nancy Grand Est, MASAIE Team, Metz, France
[2] CNRS, UMR 7122, LMAM, F-57045 Metz 01, France
[3] Univ Ouagadougou, UFR SEA, Ouagadougou, Burkina Faso
[4] St Louis Univ, UMMISCO, UMI IRD 209, St Louis, Senegal
关键词
Nonlinear dynamical systems; Global stability; Lyapunov methods; Differential susceptibility models; Reproductive number; HBV; GLOBAL STABILITY; REPRODUCTION NUMBERS; HEPATITIS-B; HIV MODEL; TRANSMISSION; EQUILIBRIA; DYNAMICS; VIRUS; SIR;
D O I
10.1007/s00285-010-0327-y
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce classes of differential susceptibility and infectivity epidemic models. These models address the problem of flows between the different susceptible, infectious and infected compartments and differential death rates as well. We prove the global stability of the disease free equilibrium when the basic reproduction ratio R-0 <= 1and the existence and uniqueness of an endemic equilibrium when R-0 > 1. We also prove the global asymptotic stabilit of the endemic equilibrium for a differential susceptibility and staged progression infectivity model, when R-0 > 1. Our results encompass and generalize those of Hyman and Li (J Math Biol 50:626-644, 2005; Math Biosci Eng 3:89-100, 2006).
引用
收藏
页码:39 / 64
页数:26
相关论文
共 43 条
[1]  
Adda P, 2007, DISCRETE CONT DYN-B, V8, P1
[2]  
ANDERSON R M, 1991
[3]  
[Anonymous], 2000, Mathematical epidemiology of infectious diseases: model building, analysis, and interpretation
[4]  
[Anonymous], 1979, Introduction to dynamic systems: theory, models, and applica-tions
[5]   Global results for an epidemic model with vaccination that exhibits backward bifurcation [J].
Arino, J ;
McCluskey, CC ;
Van den Driessche, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 64 (01) :260-276
[6]  
Bame N, 2008, MATH BIOSCI ENG, V5, P20
[7]  
Bermudez A. J., 1994, SAVMA Symposium 1994 Proceedings., P1
[8]  
Bhatia N. P, 1967, Lecture Notes in Mathematics, V1, P113
[9]  
de Jong MCM., 1995, EPIDEMIC MODELS THEI, V5, P85
[10]   Multistrain virus dynamics with mutations: a global analysis [J].
de Leenheer, Patrick ;
Pilyugin, Sergei S. .
MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2008, 25 (04) :285-322