Mapping of a Pale Green Mutant Gene and Its Functional Verification by Allelic Mutations in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)

被引:13
|
作者
Zhao, Yonghui [1 ]
Huang, Shengnan [1 ]
Zhang, Meidi [1 ]
Zhang, Yun [1 ]
Feng, Hui [1 ]
机构
[1] Shenyang Agr Univ, Dept Hort, Shenyang, Peoples R China
来源
关键词
Chinese cabbage; pale green; allelic mutations; cloning; DVR; DIVINYL CHLOROPHYLL-A; VINYL REDUCTASE GENE; CHLOROPLAST BIOGENESIS; ARABIDOPSIS-THALIANA; PROCHLOROCOCCUS; IDENTIFICATION; BIOSYNTHESIS; BARLEY; ALPHA; PROKARYOTE;
D O I
10.3389/fpls.2021.699308
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Leaves are the main organ for photosynthesis, and variations in leaf color affect photosynthesis and plant biomass formation. We created two similar whole-plant pale green mutants (pem1 and pem2) from the double haploid (DH) Chinese cabbage line "FT" through ethyl methanesulfonate (EMS) mutagenesis of seeds. Photosynthetic pigment contents and net photosynthetic rates were significantly lower in the mutants than in the wild-type "FT," and the chloroplast thylakoid endomembrane system was poor. Genetic analysis showed that the mutated phenotypes of pem1 and pem2 were caused by a single nuclear gene. Allelism tests showed that pem1 and pem2 were alleles. We mapped Brpem1 to a 64.25 kb region on chromosome A10, using BSR-Seq and map-based cloning of 979 F-2 recessive individuals. Whole-genome re-sequencing revealed a single nucleotide polymorphism (SNP) transition from guanine to adenosine on BraA10g021490.3C in pem1, causing an amino acid shift from glycine to glutamic acid (G to E); in addition, BraA10g021490.3C in pem2 was found to have a single nucleotide substitution from guanine to adenosine, causing an amino acid change from E to lysine (K). BraA10g021490.3C is a homolog of the Arabidopsisdivinyl chlorophyllide a 8-vinyl-reductase (DVR) gene that encodes 3,8-divinyl protochlorophyllide a 8-vinyl reductase, which is a key enzyme in chlorophyll biosynthesis. Enzyme activity assay and chlorophyll composition analysis demonstrated that impaired DVR had partial loss of function. These results provide a basis to understand chlorophyll metabolism and explore the mechanism of a pale green phenotype in Chinese cabbage.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Identification of a biomass unaffected pale green mutant gene in Chinese cabbage (Brassica rapa L. ssp. pekinensis)
    Yonghui Zhao
    Shengnan Huang
    Nan Wang
    Yun Zhang
    Jie Ren
    Ying Zhao
    Hui Feng
    Scientific Reports, 12
  • [2] Identification of a biomass unaffected pale green mutant gene in Chinese cabbage (Brassica rapa L. ssp. pekinensis)
    Zhao, Yonghui
    Huang, Shengnan
    Wang, Nan
    Zhang, Yun
    Ren, Jie
    Zhao, Ying
    Feng, Hui
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [3] The SAP function in pistil development was proved by two allelic mutations in Chinese cabbage (Brassica rapa L. ssp. pekinensis)
    Huang, Shengnan
    Liu, Wenjie
    Xu, Junjie
    Liu, Zhiyong
    Li, Chengyu
    Feng, Hui
    BMC PLANT BIOLOGY, 2020, 20 (01)
  • [4] The SAP function in pistil development was proved by two allelic mutations in Chinese cabbage (Brassica rapa L. ssp. pekinensis)
    Shengnan Huang
    Wenjie Liu
    Junjie Xu
    Zhiyong Liu
    Chengyu Li
    Hui Feng
    BMC Plant Biology, 20
  • [5] Fine mapping and characterization of the or gene in Chinese cabbage (Brassica rapa L. ssp pekinensis)
    Zou, C. L.
    Zheng, Y.
    Wang, P.
    Zhang, X.
    Wang, Y. -H.
    Liu, Z. Y.
    Feng, H.
    GENETICS AND MOLECULAR RESEARCH, 2016, 15 (02)
  • [6] Mapping of or, a gene conferring orange color on the inner leaf of the Chinese cabbage (Brassica rapa L. ssp. pekinensis)
    Hui Feng
    Yuefei Li
    Zhiyong Liu
    Jing Liu
    Molecular Breeding, 2012, 29 : 235 - 244
  • [7] Identification of a Leafy Head Formation Related Gene in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)
    Zhao, Yonghui
    Liu, Chuanhong
    Fang, Bing
    Huang, Shengnan
    Wang, Nan
    Tan, Chong
    Ren, Jie
    Feng, Hui
    HORTICULTURAE, 2022, 8 (11)
  • [8] Genetic Analysis and Fine Mapping of Spontaneously Mutated Male Sterility Gene in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)
    Xu, Qian
    Wei, Xiaochun
    Zhao, Yanyan
    Feng, Jianqi
    Wang, Peiyun
    Ding, Cong
    Zhang, Wenjing
    Su, Henan
    Chen, Weiwei
    Wei, Fang
    Yuan, Yuxiang
    Zhang, Xiaowei
    PLANTS-BASEL, 2025, 14 (05):
  • [9] Mapping of isolate-specific QTLs for clubroot resistance in Chinese cabbage (Brassica rapa L. ssp. pekinensis)
    Koji Sakamoto
    Atsuo Saito
    Nobuaki Hayashida
    Goro Taguchi
    Etsuo Matsumoto
    Theoretical and Applied Genetics, 2008, 117 : 759 - 767
  • [10] BrCPS1 Function in Leafy Head Formation Was Verified by Two Allelic Mutations in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)
    Gao, Yue
    Qu, Gaoyang
    Huang, Shengnan
    Liu, Zhiyong
    Fu, Wei
    Zhang, Meidi
    Feng, Hui
    FRONTIERS IN PLANT SCIENCE, 2022, 13