Approximate mixed type quadratic-cubic functional equation

被引:7
作者
Wang, Zhihua [1 ]
机构
[1] Hubei Univ Technol, Sch Sci, Wuhan 430068, Hubei, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 04期
关键词
generalized Hyers-Ulam stability; mixed type quadratic-cubic functional equation; (n; beta)-normed spaces; non-Archimedean; ADDITIVE MAPPINGS; STABILITY; SPACES;
D O I
10.3934/math.2021211
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the generalized Hyers-Ulam stability of the following mixed type quadratic-cubic functional equation 2f (2x + y) + 2f (2x - y) = 4f (x + y) + 4f (x - y) + 4f (2x) + f (2y) - 8f (x) - 8f (y) in non-Archimedean (n, beta)-normed spaces.
引用
收藏
页码:3546 / 3561
页数:16
相关论文
共 49 条
[21]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[22]   The generalized Hyers-Ulam-Rassias stability of a cubic functional equation [J].
Jun, KW ;
Kim, HM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 274 (02) :867-878
[23]  
Jung SM, 2011, SPRINGER SER OPTIM A, V48, P1, DOI 10.1007/978-1-4419-9637-4
[24]  
Kannappan P, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-89492-8_1
[25]  
Katsaras A.K., 1999, GEORGIAN MATH J, V6, P33, DOI [10.1515/gmj.1999.33, DOI 10.1023/A:1022926309318]
[26]  
Khrennikov A, 1997, MATH ITS APPL, V427
[27]   THE GENERALIZED HYERS-ULAM STABILITY OF ADDITIVE FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN 2-NORMED SPACE [J].
Kim, Chang Il ;
Park, Se Won .
KOREAN JOURNAL OF MATHEMATICS, 2014, 22 (02) :339-348
[28]  
Kim S. S., 1996, Demonst. Math., V29, P739
[29]   Fuzzy Stability of Quadratic Functional Equations [J].
Lee, Jung Rye ;
Jang, Sun-Young ;
Park, Choonkil ;
Shin, Dong Yun .
ADVANCES IN DIFFERENCE EQUATIONS, 2010,
[30]  
Malceski R., 1997, Matematichki Bilten, V21, P81