Connectedness of the solution sets and scalarization for vector equilibrium problems

被引:108
作者
Gong, X. H. [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330047, Peoples R China
基金
中国国家自然科学基金;
关键词
vector equilibrium problems; globally efficient solutions; cone-benson efficient solutions; scalarization; path connectedness;
D O I
10.1007/s10957-007-9196-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we introduce the concepts of globally efficient solution and cone-Benson efficient solution for a vector equilibrium problem; we give some scalarization results for Henig efficient solution sets, globally efficient solution sets, weak efficient solution sets, and cone-Benson efficient solution sets in locally convex spaces. Using the scalarization results, we show the connectedness and path connectedness of weak efficient solution sets and various proper efficient solution sets of vector equilibrium problem.
引用
收藏
页码:151 / 161
页数:11
相关论文
共 31 条
[1]   A generalization of vectorial equilibria [J].
Ansari, QH ;
Oettli, W ;
Schlager, D .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 1997, 46 (02) :147-152
[2]  
Aubin J P., 1984, Applied nonlinear analysis
[3]  
Baiocchi C., 1984, Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems
[4]   IMPROVED DEFINITION OF PROPER EFFICIENCY FOR VECTOR MAXIMIZATION WITH RESPECT TO CONES [J].
BENSON, HP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 71 (01) :232-241
[5]   Vector equilibrium problems with generalized monotone bifunctions [J].
Bianchi, M ;
Hadjisavvas, N ;
Schaible, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 92 (03) :527-542
[6]   SUPER EFFICIENCY IN VECTOR OPTIMIZATION [J].
BORWEIN, JM ;
ZHUANG, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (01) :105-122
[7]  
Chen G., 1987, INTERACTIVE INTELLIG, P408, DOI [10.1007/978-3-642-46607-6_44, DOI 10.1007/978-3-642-46607-6_44]
[8]   EXISTENCE OF SOLUTIONS FOR A VECTOR VARIATIONAL INEQUALITY - AN EXTENSION OF THE HARTMANN-STAMPACCHIA THEOREM [J].
CHEN, GY .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 74 (03) :445-456
[9]  
CHEN GY, 1990, J MATH ANAL APPL, V153, P136
[10]   Existence of solutions for a generalized vector quasivariational inequality [J].
Chen, GY ;
Li, SJ .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 90 (02) :321-334