On a nonlinear system of Riemann-Liouville fractional differential equations with semi-coupled integro-multipoint boundary conditions

被引:7
|
作者
Alsaedi, Ahmed [1 ]
Ahmad, Bashir [1 ]
Alghamdi, Badrah [1 ]
Ntouyas, Sotiris K. [2 ]
机构
[1] King Abdulaziz Univ, Nonlinear Anal & Appl Math NAAM Res Grp, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[2] Univ Ioannina, Dept Math, Ioannina 45110, Greece
来源
OPEN MATHEMATICS | 2021年 / 19卷 / 01期
关键词
Riemann-Liouville fractional derivative; integro-differential inclusions; nonlocal multi-point boundary conditions; existence; fixed point theorems; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.1515/math-2021-0069
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a nonlinear system of Riemann-Liouville fractional differential equations equipped with nonseparated semi-coupled integro-multipoint boundary conditions. We make use of the tools of the fixedpoint theory to obtain the desired results, which are well-supported with numerical examples.
引用
收藏
页码:760 / 772
页数:13
相关论文
共 50 条
  • [1] A study of a nonlinear Riemann-Liouville coupled integro-differential system with coupled nonlocal fractional integro-multipoint boundary conditions
    Ahmad, Bashir
    Alsaedi, Ahmed
    Alghamdi, Badrah
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (07) : 2605 - 2625
  • [2] Existence and uniqueness for a coupled system of fractional equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions
    Alruwaily, Ymnah
    Almaghamsi, Lamya
    Karthikeyan, Kulandhaivel
    El-hady, El-sayed
    AIMS MATHEMATICS, 2023, 8 (05): : 10067 - 10094
  • [3] On a coupled system of higher order nonlinear Caputo fractional differential equations with coupled Riemann–Stieltjes type integro-multipoint boundary conditions
    Ahmed Alsaedi
    Bashir Ahmad
    Ymnah Alruwaily
    Sotiris K. Ntouyas
    Advances in Difference Equations, 2019
  • [4] Existence Results for Coupled Nonlinear Sequential Fractional Differential Equations with Coupled Riemann-Stieltjes Integro-Multipoint Boundary Conditions
    Alruwaily, Ymnah
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Alzaidi, Ahmed S. M.
    FRACTAL AND FRACTIONAL, 2022, 6 (02)
  • [5] On a coupled system of higher order nonlinear Caputo fractional differential equations with coupled Riemann-Stieltjes type integro-multipoint boundary conditions
    Alsaedi, Ahmed
    Ahmad, Bashir
    Alruwaily, Ymnah
    Ntouyas, Sotiris K.
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [6] On a system of Riemann-Liouville fractional differential equations with coupled nonlocal boundary conditions
    Luca, Rodica
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [7] Nonlinear multi-term fractional differential equations with Riemann-Stieltjes integro-multipoint boundary conditions
    Ahmad, Bashir
    Alsaedi, Ahmed
    Alruwaily, Ymnah
    Ntouyas, Sotiris K.
    AIMS MATHEMATICS, 2020, 5 (02): : 1446 - 1461
  • [8] ON A COUPLED SYSTEM OF FRACTIONAL ORDER DIFFERENTIAL EQUATIONS WITH RIEMANN-LIOUVILLE TYPE BOUNDARY CONDITIONS
    Raju, V. V. R. R. B.
    Krushna, B. M. B.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2018,
  • [9] RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS WITH FRACTIONAL BOUNDARY CONDITIONS
    Ahmad, Bashir
    Nieto, Juan J.
    FIXED POINT THEORY, 2012, 13 (02): : 329 - 336
  • [10] Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions
    Ahmad, Bashir
    Nieto, Juan J.
    BOUNDARY VALUE PROBLEMS, 2011, : 1 - 9