Analyzing collective motion with machine learning and topology

被引:33
作者
Bhaskar, Dhananjay [1 ]
Manhart, Angelika [2 ]
Milzman, Jesse [3 ]
Nardini, John T. [4 ]
Storey, Kathleen M. [5 ]
Topaz, Chad M. [6 ]
Ziegelmeier, Lori [7 ]
机构
[1] Brown Univ, Ctr Biomed Engn, Providence, RI 02912 USA
[2] UCL, Dept Math, London WC1E 6BT, England
[3] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[4] SAMSI, Durham, NC 27709 USA
[5] Univ Michigan, Dept Math, Ann Arbor, MI 48105 USA
[6] Williams Coll, Dept Math & Stat, Williamstown, MA 01267 USA
[7] Macalester Coll, Dept Math Stat & Comp Sci, St Paul, MN 55105 USA
基金
美国国家科学基金会;
关键词
ANIMAL GROUPS; BIOMIMETICS; PARTICLE; SYSTEMS; MODELS;
D O I
10.1063/1.5125493
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use topological data analysis and machine learning to study a seminal model of collective motion in biology [M. R. D'Orsogna et al., Phys. Rev. Lett. 96, 104302 (2006)]. This model describes agents interacting nonlinearly via attractive-repulsive social forces and gives rise to collective behaviors such as flocking and milling. To classify the emergent collective motion in a large library of numerical simulations and to recover model parameters from the simulation data, we apply machine learning techniques to two different types of input. First, we input time series of order parameters traditionally used in studies of collective motion. Second, we input measures based on topology that summarize the time-varying persistent homology of simulation data over multiple scales. This topological approach does not require prior knowledge of the expected patterns. For both unsupervised and supervised machine learning methods, the topological approach outperforms the one that is based on traditional order parameters. (C) 2019 Author(s).
引用
收藏
页数:12
相关论文
共 45 条
[1]   Mechanistic models versus machine learning, a fight worth fighting for the biological community? [J].
Baker, Ruth E. ;
Pena, Jose-Maria ;
Jayamohan, Jayaratnam ;
Jerusalem, Antoine .
BIOLOGY LETTERS, 2018, 14 (05)
[2]  
BANKS HT, 1983, J MATH BIOL, V17, P253, DOI 10.1007/BF00276516
[3]   Biomimetics: lessons from nature - an overview [J].
Bhushan, Bharat .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1893) :1445-1486
[4]  
Camazine S., 2020, Self-organization in biological systems
[5]  
Chazal F, 2018, J MACH LEARN RES, V18
[6]   Geometric Inference for Probability Measures [J].
Chazal, Frederic ;
Cohen-Steiner, David ;
Merigot, Quentin .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2011, 11 (06) :733-751
[7]   Underwater attachment using hairs: the functioning of spatula and sucker setae from male diving beetles [J].
Chen, Ying ;
Shih, Ming-Chih ;
Wu, Ming-Huang ;
Yang, En-Cheng ;
Chi, Kai-Jung .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2014, 11 (97)
[8]   State transitions and the continuum limit for a 2D interacting, self-propelled particle system [J].
Chuang, Yao-Li ;
D'Orsogna, Maria R. ;
Marthaler, Daniel ;
Bertozzi, Andrea L. ;
Chayes, Lincoln S. .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 232 (01) :33-47
[9]   Swarming in viscous fluids: Three-dimensional patterns in swimmer- and force-induced flows [J].
Chuang, Yao-Li ;
Chou, Tom ;
D'Orsogna, Maria R. .
PHYSICAL REVIEW E, 2016, 93 (04)
[10]   Stability of persistence diagrams [J].
Cohen-Steiner, David ;
Edelsbrunner, Herbert ;
Harer, John .
DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 37 (01) :103-120