Novel solution of the system describing the resonant interaction of three waves

被引:36
|
作者
Calogero, F [1 ]
Degasperis, A
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[2] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy
关键词
three-wave interaction; solitons; integrable PDEs;
D O I
10.1016/j.physd.2004.11.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A novel solution is presented of the standard, integrable system of three coupled PDEs representing in 1 + 1 dimensions the three-wave resonant interaction phenomenon. In this new solution-a kind of "semi-dark single-soliton" solution-two of the three waves are localized (with a typical "solitonic" shape, vanishing asymptotically at large spatial distances), while the third has a "kink-like" shape, featuring a localized knee and being asymptotically finite. The time evolution of this solution displays quite a rich phenomenology: indeed, by focussing on its long-time behavior, one notes that, depending on the values of the parameters, this solution might display a phenomenon of pair annihilation or creation, namely each of its components might possess a pair of localized objects (soliton-like for the two asymptotically vanishing components, kink-like for the other) only in the remote past or only in the remote future, or it might instead possess a single such object both in the remote past and future but behaving overall as a boomeron or as a trappon, namely, in a reference frame moving with an appropriate constant velocity, coming in from one end in the remote past and boomeranging back there in the remote future, or being trapped to oscillate periodically around a finite position throughout the time evolution. And for special values of the parameters even more exotic phenomenologies emerge. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:242 / 256
页数:15
相关论文
共 50 条
  • [41] Resonant interaction of edge dislocations with running acoustic waves
    Dmitriev, S. V.
    Pshenichnyuk, A. I.
    Iskandarov, A. M.
    Nazarova, A. A.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2010, 18 (02)
  • [42] On self-similar solution of a system of three-wave interaction
    Tsegelnik, VV
    DOKLADY AKADEMII NAUK BELARUSI, 1997, 41 (03): : 17 - 20
  • [43] SIMPLE MODEL FOR DESCRIBING INTERACTION OF INFINITESIMAL AND FINITE-AMPLITUDE WAVES
    PRIDHAM, RG
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1974, 55 : S50 - S50
  • [44] SPHERICAL EXPANSION OF RELATIVISTIC WAVES DESCRIBING INTERACTION BETWEEN SCALAR PARTICLES
    DROZVINCENT, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (09): : 735 - 738
  • [45] Stability of solitary waves for a system of nonlinear Schrodinger equations with three wave interaction
    Colin, M.
    Colin, Th.
    Ohta, M.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (06): : 2211 - 2226
  • [46] Parameters Describing Multimodal Interaction - Definitions and Three Usage Scenarios
    Kuehnel, Christine
    Weiss, Benjamin
    Moeller, Sebastian
    11TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2010 (INTERSPEECH 2010), VOLS 3 AND 4, 2010, : 1934 - 1937
  • [47] Resonant interaction of coupled polarization waves with a degenerate resonant two-photon transition
    Zabolotskii, A. A.
    PHYSICAL REVIEW A, 2008, 78 (06):
  • [48] ATMOSPHERIC-PRESSURE AND INTERNAL WAVES INTERACTION - RESONANT CASE
    COLACINO, M
    PURINI, R
    ROVELLI, A
    STOCCHINO, C
    ARCHIV FUR METEOROLOGIE GEOPHYSIK UND BIOKLIMATOLOGIE SERIE A-METEOROLOGIE UND GEOPHYSIK, 1979, 28 (2-3): : 279 - 291
  • [49] Linear and nonlinear resonant interaction of sound waves in dissipative layers
    Ballai, I
    Erdélyi, R
    Goossens, M
    JOURNAL OF PLASMA PHYSICS, 2000, 64 (03) : 235 - 247
  • [50] 6-PHOTON INTERACTION OF LIGHT WAVES IN RESONANT MEDIA
    APANASEVICH, PA
    URBANOVI.AI
    OPTIKA I SPEKTROSKOPIYA, 1974, 36 (04): : 753 - 757