We study the extension properties of Orlicz-Sobolev functions both in Euclidean spaces and in metric measure spaces equipped with a doubling measure. We show that a set E subset of R satisfying a measure density condition admits a bounded linear extension operator from the trace space W-1,W-psi (R-n)vertical bar(E) to W-1,W-psi (R-n). Then we show that a domain, in which the Sobolev embedding theorem or a Poincare-type inequality holds, satisfies the measure density condition. It follows that the existence of a bounded, possibly non-linear extension operator or even the surjectivity of the trace operator implies the measure density condition and hence the existence of a bounded linear extension operator. (C) 2010 Elsevier Inc. All rights reserved.
机构:
Consiglio Nazl Ric CNR, Ist Microelettron & Microsistemi, Via Pietro Castellino 111, I-80131 Naples, ItalyConsiglio Nazl Ric CNR, Ist Microelettron & Microsistemi, Via Pietro Castellino 111, I-80131 Naples, Italy
Alberico, Angela
Cianchi, Andrea
论文数: 0引用数: 0
h-index: 0
机构:
Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, ItalyConsiglio Nazl Ric CNR, Ist Microelettron & Microsistemi, Via Pietro Castellino 111, I-80131 Naples, Italy
Cianchi, Andrea
Pick, Lubos
论文数: 0引用数: 0
h-index: 0
机构:
Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 8, Czech RepublicConsiglio Nazl Ric CNR, Ist Microelettron & Microsistemi, Via Pietro Castellino 111, I-80131 Naples, Italy
Pick, Lubos
Slavikova, Lenka
论文数: 0引用数: 0
h-index: 0
机构:
Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 8, Czech RepublicConsiglio Nazl Ric CNR, Ist Microelettron & Microsistemi, Via Pietro Castellino 111, I-80131 Naples, Italy