Orlicz-Sobolev extensions and measure density condition

被引:7
|
作者
Heikkinen, Toni [1 ]
Tuominen, Heli [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
基金
芬兰科学院;
关键词
Orlicz-Sobolev space; Extension domain; Measure density; Metric measure space; FINITE DISTORTION; REGULAR SUBSETS; SPACES; MAPPINGS; EXTENDABILITY; OPERATORS;
D O I
10.1016/j.jmaa.2010.03.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the extension properties of Orlicz-Sobolev functions both in Euclidean spaces and in metric measure spaces equipped with a doubling measure. We show that a set E subset of R satisfying a measure density condition admits a bounded linear extension operator from the trace space W-1,W-psi (R-n)vertical bar(E) to W-1,W-psi (R-n). Then we show that a domain, in which the Sobolev embedding theorem or a Poincare-type inequality holds, satisfies the measure density condition. It follows that the existence of a bounded, possibly non-linear extension operator or even the surjectivity of the trace operator implies the measure density condition and hence the existence of a bounded linear extension operator. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:508 / 524
页数:17
相关论文
共 50 条
  • [1] Orlicz-Sobolev embeddings, extensions and Orlicz-Poincareinequalities
    Heikkinen, Toni
    Karak, Nijjwal
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (02)
  • [2] A density result on Orlicz-Sobolev spaces in the plane
    Ortiz, Walter A.
    Rajala, Tapio
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 503 (02)
  • [3] Pointwise behaviour of Orlicz-Sobolev functions
    Tuominen, Heli
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (01) : 35 - 59
  • [4] LEBESGUE POINTS FOR ORLICZ-SOBOLEV FUNCTIONS ON METRIC MEASURE SPACES
    Mocanu, Marcelina
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2011, 57 : 175 - 186
  • [5] TOWARD THE THEORY OF ORLICZ-SOBOLEV CLASSES
    Kovtonyuk, D. A.
    Ryazanov, V. I.
    Salimov, R. R.
    Sevost'yanov, E. A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2014, 25 (06) : 929 - 963
  • [6] Composition operators in Orlicz-Sobolev spaces
    Menovshchikov, A. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (05) : 849 - 859
  • [7] Fractional Orlicz-Sobolev embeddings
    Alberico, Angela
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 149 : 216 - 253
  • [8] On fractional Orlicz-Sobolev spaces
    Alberico, Angela
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (02)
  • [9] On F-Sobolev and Orlicz-Sobolev inequalities
    Kang, Cholryong
    Wang, Fengyu
    FRONTIERS OF MATHEMATICS IN CHINA, 2009, 4 (04) : 659 - 667
  • [10] Extension in generalized Orlicz-Sobolev spaces
    Juusti, Jonne
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 522 (01)