Orlicz-Sobolev extensions and measure density condition

被引:8
作者
Heikkinen, Toni [1 ]
Tuominen, Heli [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
基金
芬兰科学院;
关键词
Orlicz-Sobolev space; Extension domain; Measure density; Metric measure space; FINITE DISTORTION; REGULAR SUBSETS; SPACES; MAPPINGS; EXTENDABILITY; OPERATORS;
D O I
10.1016/j.jmaa.2010.03.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the extension properties of Orlicz-Sobolev functions both in Euclidean spaces and in metric measure spaces equipped with a doubling measure. We show that a set E subset of R satisfying a measure density condition admits a bounded linear extension operator from the trace space W-1,W-psi (R-n)vertical bar(E) to W-1,W-psi (R-n). Then we show that a domain, in which the Sobolev embedding theorem or a Poincare-type inequality holds, satisfies the measure density condition. It follows that the existence of a bounded, possibly non-linear extension operator or even the surjectivity of the trace operator implies the measure density condition and hence the existence of a bounded linear extension operator. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:508 / 524
页数:17
相关论文
共 36 条
[1]   ORLICZ-SOBOLEV IMBEDDING THEOREM [J].
ADAMS, RA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1977, 24 (03) :241-257
[2]  
Aissaoui N., 2002, Abstract and Applied Analysis, V7, P357, DOI 10.1155/S1085337502203024
[3]  
[Anonymous], 1971, Lecture Notes in Mathematics
[4]  
[Anonymous], 1971, J. Funct. Anal.
[5]  
[Anonymous], 1961, Convex functions and Orlicz spaces
[6]  
[Anonymous], 1991, Weighted Inequalities in Lorentz and Orlicz Spaces
[7]  
Calderon A.-P., 1961, P S PURE MATH, V4, P33
[8]  
Cianchi A, 1996, INDIANA U MATH J, V45, P39
[9]   Strong and weak type inequalities for some classical operators in Orlicz spaces [J].
Cianchi, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 :187-202
[10]  
Cianchi A., 1996, ANN SC NORM SUPER PI, V23, P575