Ensemble Classifier for Stock Trading Recommendation

被引:5
作者
Worasucheep, Chukiat [1 ]
机构
[1] King Mongkuts Univ Technol Thonburi, Dept Math, Appl Comp Sci Program, 126 Pracha Utid Rd, Bangkok 10140, Thailand
关键词
MACHINE; PREDICTION; MARKET; OPTIMIZATION; RETURNS; MODEL;
D O I
10.1080/08839514.2021.2001178
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a heterogeneous ensemble classifier for price trend prediction of a stock, in which the prediction results are subsequently used in trading recommendation. The proposed ensemble model is based on Support vector machine, Artificial neural networks, Random forest, Extreme gradient boosting, and Light gradient boosting machine. A feature selection is performed to choose an optimal set of 45 technical indicators as input attributes of the model. Each base classifier is executed with an extensive hyperparameter tuning to improve performance. The prediction results from five base classifiers are aggregated through a modified majority voting among three classifiers with the highest accuracies, to obtain final prediction result. The performance of proposed ensemble classifier is evaluated using daily historical prices of 20 stocks from Stock Exchange of Thailand, with 3 overlapping datasets of 5-year intervals during 2014-2020 for different market conditions. The experimental results show that the proposed ensemble classifier clearly outperforms buy-and-hold strategy, individual base classifiers, and the ensemble with straightforward majority voting in terms of both trading return and Sharpe ratio.
引用
收藏
页数:32
相关论文
共 44 条
  • [1] Evaluation of Tree-Based Ensemble Machine Learning Models in Predicting Stock Price Direction of Movement
    Ampomah, Ernest Kwame
    Qin, Zhiguang
    Nyame, Gabriel
    [J]. INFORMATION, 2020, 11 (06)
  • [2] A survey on swarm intelligence approaches to feature selection in data mining
    Bach Hoai Nguyen
    Xue, Bing
    Zhang, Mengjie
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2020, 54
  • [3] Bose N. K., 1996, NEURAL NETWORK FUNDA, P478
  • [4] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [5] Feature selection in machine learning: A new perspective
    Cai, Jie
    Luo, Jiawei
    Wang, Shulin
    Yang, Sheng
    [J]. NEUROCOMPUTING, 2018, 300 : 70 - 79
  • [6] Application of neural networks to an emerging financial market: forecasting and trading the Taiwan Stock Index
    Chen, AS
    Leung, MT
    Daouk, H
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2003, 30 (06) : 901 - 923
  • [7] XGBoost: A Scalable Tree Boosting System
    Chen, Tianqi
    Guestrin, Carlos
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 785 - 794
  • [8] Mean-variance portfolio optimization using machine learning-based stock price prediction
    Chen, Wei
    Zhang, Haoyu
    Mehlawat, Mukesh Kumar
    Jia, Lifen
    [J]. APPLIED SOFT COMPUTING, 2021, 100
  • [9] SUPPORT-VECTOR NETWORKS
    CORTES, C
    VAPNIK, V
    [J]. MACHINE LEARNING, 1995, 20 (03) : 273 - 297
  • [10] A novel hybrid method for direction forecasting and trading of Apple Futures
    Deng, Shangkun
    Huang, Xiaoru
    Qin, Zhaohui
    Fu, Zhe
    Yang, Tianxiang
    [J]. APPLIED SOFT COMPUTING, 2021, 110