Bounds for Complete Arcs in PG(3, q) and Covering Codes of Radius 3, Codimension 4, Under a Certain Probabilistic Conjecture

被引:3
作者
Davydov, Alexander A. [1 ]
Marcugini, Stefano [2 ]
Pambianco, Fernanda [2 ]
机构
[1] Russian Acad Sci, Inst Informat Transmiss Problems, Kharkevich Inst, Moscow, Russia
[2] Perugia Univ, Dept Math & Comp Sci, Perugia, Italy
来源
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2020, PT I | 2020年 / 12249卷
关键词
Arcs in projective spaces; Covering codes; The d-length function; SMALLEST SIZE; SATURATING SETS; LINEAR CODES;
D O I
10.1007/978-3-030-58799-4_8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let t(N, q) be the smallest size of a complete arc in the N-dimensional projective space PG(N, q) over the Galois field of order q. The d-length function l(q)(r, R, d) is the smallest length of a q-ary linear code of codimension (redundancy) r, covering radius R, and minimum distance d; in particular, l(q)(4, 3, 5) is the smallest length n of an [n, n - 4, 5](q)3 quasi-perfect MDS code. By the definitions, l(q)(4, 3, 5) = t(3, q). In this paper, a step-by-step construction of complete arcs in PG(3, q) is considered. It is proved that uncovered points are uniformly distributed in the space. A natural conjecture on quantitative estimations of the construction is presented. Under this conjecture, new upper bounds on t(3, q) are obtained, in particular, t(3, q) < 2.93 3 root q ln q.
引用
收藏
页码:107 / 122
页数:16
相关论文
共 26 条
[1]   Upper Bounds on the Smallest Size of a Complete Arc in PG(2, q) under a Certain Probabilistic Conjecture [J].
Bartoli, D. ;
Davydov, A. A. ;
Faina, G. ;
Kreshchuk, A. A. ;
Marcugini, S. ;
Pambianco, F. .
PROBLEMS OF INFORMATION TRANSMISSION, 2014, 50 (04) :320-339
[2]  
Bartoli D., 2020, ARXIV171207078CSIT
[3]  
Bartoli D., 2018, ARXIV14040469MATHCO
[4]   New bounds for linear codes of covering radii 2 and 3 [J].
Bartoli, Daniele ;
Davydov, Alexander A. ;
Giulietti, Massimo ;
Marcugini, Stefano ;
Pambianco, Fernanda .
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (05) :903-920
[5]   Upper bounds on the smallest size of a complete arc in a finite Desarguesian projective plane based on computer search [J].
Bartoli, Daniele ;
Davydov, Alexander A. ;
Faina, Giorgio ;
Kreshchuk, Alexey A. ;
Marcugini, Stefano ;
Pambianco, Fernanda .
JOURNAL OF GEOMETRY, 2016, 107 (01) :89-117
[6]   On the Covering Radius of MDS Codes [J].
Bartoli, Daniele ;
Giulietti, Massimo ;
Platoni, Irene .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (02) :801-811
[7]  
Brualdi RA, 1998, HANDBOOK OF CODING THEORY, VOLS I & II, P755
[8]  
Cohen G., 1997, N HOLLAND MATH LIB, V54
[9]   Linear codes with covering radius R=2, 3 and codimension tR [J].
Davydov, AA ;
Östergård, PRJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (01) :416-421
[10]  
Davydov AA, 2019, INT SYMP PROBL RED, P52, DOI [10.1109/REDUNDANCY48165.2019.9003348, 10.1109/redundancy48165.2019.9003348]