Screening ion-channel ligand interactions with passive pumping in a microfluidic bilayer lipid membrane chip

被引:4
|
作者
Saha, Shimul C. [1 ,2 ]
Powl, Andrew M. [3 ]
Wallace, B. A. [3 ]
de Planque, Maurits R. R. [1 ,2 ]
Morgan, Hywel [1 ,2 ]
机构
[1] Univ Southampton, Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
[2] Univ Southampton, Inst Life Sci, Southampton SO17 1BJ, Hants, England
[3] Univ London Birkbeck Coll, Inst Struct & Mol Biol, London WC1E 7HX, England
来源
BIOMICROFLUIDICS | 2015年 / 9卷 / 01期
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
POTASSIUM CHANNEL; SOLUTION EXCHANGE; KCSA; APERTURES; TETRAETHYLAMMONIUM; RECORDINGS; MICROARRAY; RESOLUTION; STABILITY; NANOPORES;
D O I
10.1063/1.4905313
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We describe a scalable artificial bilayer lipid membrane platform for rapid electrophysiological screening of ion channels and transporters. A passive pumping method is used to flow microliter volumes of ligand solution across a suspended bilayer within a microfluidic chip. Bilayers are stable at flow rates up to similar to 0.5 mu l/min. Phospholipid bilayers are formed across a photolithographically defined aperture made in a dry film resist within the microfluidic chip. Bilayers are stable for many days and the low shunt capacitance of the thin film support gives lownoise high-quality single ion channel recording. Dose-dependent transient blocking of alpha-hemolysin with beta-cyclodextrin (beta-CD) and polyethylene glycol is demonstrated and dose-dependent blocking studies of the KcsA potassium channel with tetraethylammonium show the potential for determining IC50 values. The assays are fast (30 min for a complete IC50 curve) and simple and require very small amounts of compounds (100 mu g in 15 mu l). The technology can be scaled so that multiple bilayers can be addressed, providing a screening platform for ion channels, transporters, and nanopores. (c) 2015 AIP Publishing LLC.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] X-ray Structure Determination of Ion-Channel Crystalline Architectures Close to Bilayer Membrane-Confined Conditions
    Barboiu, Mihail
    Dumitrescu, Dan
    van der Lee, Arie
    CRYSTAL GROWTH & DESIGN, 2014, 14 (06) : 3062 - 3068
  • [32] Micro-patterning of ionic reservoirs within a double bilayer lipid membrane to fabricate a 2D array of ion-channel switch based electrochemical biosensors
    Sansiñena, JM
    Yee, CK
    Sapuri, A
    Swanson, B
    Redondo, A
    Parikh, AN
    NSTI NANOTECH 2004, VOL 1, TECHNICAL PROCEEDINGS, 2004, : 221 - 223
  • [33] Native Function of the Bacterial Ion Channel SthK in a Sparsely Tethered Lipid Bilayer Membrane Architecture
    Andersson, Jakob
    Kleinheinz, David
    Ramach, Ulrich
    Kiesenhofer, Nikolaus
    Ashenden, Alex
    Valtiner, Markus
    Holt, Stephen
    Koeper, Ingo
    Schmidpeter, Philipp A. M.
    Knoll, Wolfgang
    JOURNAL OF PHYSICAL CHEMISTRY B, 2023, 127 (16): : 3641 - 3650
  • [34] Rapid lipid bilayer membrane formation on Parylene coated apertures to perform ion channel analyses
    Ahmed, Tanzir
    van den Driesche, Sander
    Bafna, Jayesh Arun
    Oellers, Martin
    Hemmler, Roland
    Gall, Karsten
    Wagner, Richard
    Winterhalter, Mathias
    Vellekoop, Michael J.
    BIOMEDICAL MICRODEVICES, 2020, 22 (02)
  • [35] Rapid lipid bilayer membrane formation on Parylene coated apertures to perform ion channel analyses
    Tanzir Ahmed
    Sander van den Driesche
    Jayesh Arun Bafna
    Martin Oellers
    Roland Hemmler
    Karsten Gall
    Richard Wagner
    Mathias Winterhalter
    Michael J. Vellekoop
    Biomedical Microdevices, 2020, 22
  • [36] Scalable micro-cavity bilayer lipid membrane arrays for parallel ion channel recording
    Saha, Shimul Chandra
    Thei, Federico
    de Planque, Maurits R. R.
    Morgan, Hywel
    SENSORS AND ACTUATORS B-CHEMICAL, 2014, 199 : 76 - 82
  • [37] Experimental and molecular dynamics (MD) characterization of membrane interactions of the cysteine knot (CK) family of ion-channel blockers
    Posokhov, Yevgen O.
    Freites, J. Alfredo
    Gottlieb, Philip A.
    Sachs, Frederick
    Tobias, Douglas J.
    Ladokhin, Alexey S.
    BIOPHYSICAL JOURNAL, 2007, : 544A - 545A
  • [38] Ninety-six-well planar lipid bilayer chip for ion channel recording fabricated by hybrid stereolithography
    Hiroaki Suzuki
    Bruno Le Pioufle
    Shoji Takeuchi
    Biomedical Microdevices, 2009, 11 (1) : 23 - 23
  • [39] Ninety-six-well planar lipid bilayer chip for ion channel recording Fabricated by hybrid stereolithography
    Suzuki, Hiroaki
    Le Pioufle, Bruno
    Takeuhci, Shoji
    BIOMEDICAL MICRODEVICES, 2009, 11 (01) : 17 - 22
  • [40] Enhancement of membrane protein reconstitution on 3D free-standing lipid bilayer array in a microfluidic channel
    Han, Won Bae
    Kang, Dong-Hyun
    Na, Jung-Hyun
    Yu, Yeon Gyu
    Kim, Tae Song
    BIOSENSORS & BIOELECTRONICS, 2019, 141