Nanostructured titanium nitride as a novel cathode for high performance lithium/dissolved polysulfide batteries

被引:72
作者
Mosavati, Negar [1 ]
Chitturi, Venkateswara Rao [1 ]
Salley, Steven O. [1 ]
Ng, K. Y. Simon [1 ]
机构
[1] Wayne State Univ, Dept Chem Engn & Mat Sci, Detroit, MI 48202 USA
关键词
Lithium sulfur battery; Dissolved polysulfide; Cathode material; Titanium nitride; LITHIUM-SULFUR BATTERIES; THIN-FILM; LIQUID ELECTROLYTE; ANODE MATERIAL; ELECTROCHEMISTRY; IMPROVEMENT; CHEMISTRY; MECHANISM; HOST;
D O I
10.1016/j.jpowsour.2016.04.099
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-sulfur (Li-S) batteries could potentially revolutionize the rechargeable battery market due to their high energy density and low cost. However, low active material utilization, electrode volumetric expansion and a high rate of capacity fade due to the dissolution of lithium polysulfide intermediates in the liquid electrolyte are the main challenges facing further Li-S battery development. Here, we enhanced Li-S batteries active material utilization and decreased the volumetric expansion by using the lithium/dissolved polysulfide configuration. Moreover, a novel class of cathode materials, Titanium Nitride (TiN), was developed for polysulfide conversion reactions. The surface chemical environment of the TiN has been investigated by X-ray photoelectron spectroscopy (XPS) analysis. The existence of S-Ti-N bonding at the cathode electrode surface was observed, which indicates the strong interactions between TiN and polysulfides. Therefore, the TiN electrode retains the sulfur species on the cathode surface, minimizing the active material and surface area loss and consequently, improves the capacity retention. The resultant cells demonstrated a high initial capacity of 1524 mAh g(-1) and a good capacity retention for 100 cycles at a C/10 current rate. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 93
页数:7
相关论文
共 45 条
[1]   Electrocatalytic Polysulfide Traps for Controlling Redox Shuttle Process of Li-S Batteries [J].
Al Salem, Hesham ;
Babu, Ganguli ;
Rao, Chitturi V. ;
Arava, Leela Mohana Reddy .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (36) :11542-11545
[2]   Electrocatalysis of Lithium Polysulfides: Current Collectors as Electrodes in Li/S Battery Configuration [J].
Babu, Ganguli ;
Ababtain, Khalid ;
Ng, K. Y. Simon ;
Arava, Leela Mohana Reddy .
SCIENTIFIC REPORTS, 2015, 5
[3]   Recent advances in metal nitrides as high-performance electrode materials for energy storage devices [J].
Balogun, Muhammad-Sadeeq ;
Qiu, Weitao ;
Wang, Wang ;
Fang, Pingping ;
Lu, Xihong ;
Tong, Yexiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (04) :1364-1387
[4]   Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries [J].
Balogun, Muhammad-Sadeeq ;
Yu, Minghao ;
Li, Cheng ;
Zhai, Teng ;
Liu, Yi ;
Lu, Xihong ;
Tong, Yexiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (28) :10825-10829
[5]   Novel positive electrode architecture for rechargeable lithium/sulfur batteries [J].
Barchasz, Celine ;
Mesguich, Frederic ;
Dijon, Jean ;
Lepretre, Jean-Claude ;
Patoux, Sebastien ;
Alloin, Fannie .
JOURNAL OF POWER SOURCES, 2012, 211 :19-26
[6]   Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium-sulfur battery [J].
Chang, DR ;
Lee, SH ;
Kim, SW ;
Kim, HT .
JOURNAL OF POWER SOURCES, 2002, 112 (02) :452-460
[7]   Synthesis and Characterization of Nanostructured Niobium and Molybdenum Nitrides by a Two-Step Transition Metal Halide Approach [J].
Choi, Daiwon ;
Kumta, Prashant N. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2011, 94 (08) :2371-2378
[8]   Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes [J].
Choi, Jae-Won ;
Kim, Jin-Kyu ;
Cheruvally, Gouri ;
Ahn, Jou-Hyeon ;
Ahn, Hyo-Jun ;
Kim, Ki-Won .
ELECTROCHIMICA ACTA, 2007, 52 (05) :2075-2082
[9]   A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li-S batteries [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
CHEMICAL COMMUNICATIONS, 2014, 50 (32) :4184-4187
[10]   Lithium-sulfur batteries with superior cycle stability by employing porous current collectors [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ELECTROCHIMICA ACTA, 2013, 107 :569-576