On decomposing a hypergraph into k connected sub-hypergraphs

被引:60
作者
Frank, A
Király, T
Kriesell, M
机构
[1] Eotvos Lorand Univ, Dept Operat Res, H-1117 Budapest, Hungary
[2] Traffic Lab Ericsson Hungary, H-1037 Budapest, Hungary
[3] Leibniz Univ Hannover, Inst Math, D-30167 Hannover, Germany
[4] Univ Bonn, Inst Discrete Math, D-5300 Bonn, Germany
关键词
D O I
10.1016/S0166-218X(02)00463-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By applying the matroid partition theorem of J. Edmonds (J. Res. Nat. Bur. Standards Sect. B 69 (1965) 67) to a hypergraphic generalization of graphic matroids, due to Lorea (Cahiers Centre Etudes Rech. Oper. 17 (1975) 289), we obtain a generalization of Tutte's disjoint trees theorem for hypergraphs. As a corollary, we prove for positive integers k and q that every (kq)-edge-connected hypergraph of rank q can be decomposed into k connected sub-hypergraphs, a well-known result for q = 2. Another by-product is a connectivity-type sufficient condition for the existence of k edge-disjoint Steiner trees in a bipartite graph. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:373 / 383
页数:11
相关论文
共 7 条
[1]  
[Anonymous], ANN DISCRETE MATH
[2]  
[Anonymous], 1961, Journal of the London Mathematical Society, DOI DOI 10.1112/JLMS/S1-36.1.221
[3]   MINIMUM PARTITION OF A MATROID INTO INDEPENDENT SUBSETS [J].
EDMONDS, J .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICS AND MATHEMATICAL, 1965, B 69 (1-2) :67-+
[4]  
Edmonds J., 1970, Combinatorial Structures and Their Applications, P69, DOI DOI 10.1007/3-540-36478
[5]  
Lorea M., 1975, Cahiers Centre Etudes Rech. Oper., V17, P289
[6]   GENERALIZATION OF KONIGS THEOREM [J].
LOVASZ, L .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1970, 21 (3-4) :443-&
[7]  
NashWilliams C. St. J. A., 1964, Journal of the London Mathematical Society, V1, P12