Experimentally testing the dependence of momentum transport on second derivatives using Gaussian process regression

被引:19
作者
Chilenski, M. A. [1 ]
Greenwald, M. J. [1 ]
Hubbard, A. E. [1 ]
Hughes, J. W. [1 ]
Lee, J. P. [1 ]
Marzouk, Y. M. [2 ]
Rice, J. E. [1 ]
White, A. E. [1 ]
机构
[1] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA
关键词
momentum transport; Bayesian analysis; Gaussian processes; profile fitting;
D O I
10.1088/1741-4326/aa8387
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It remains an open question to explain the dramatic change in intrinsic rotation induced by slight changes in electron density (White et al 2013 Phys. Plasmas 20 056106). One proposed explanation is that momentum transport is sensitive to the second derivatives of the temperature and density profiles (Lee et al 2015 Plasma Phys. Control. Fusion 57 125006), but it is widely considered to be impossible to measure these higher derivatives. In this paper, we show that it is possible to estimate second derivatives of electron density and temperature using a nonparametric regression technique known as Gaussian process regression. This technique avoids over-constraining the fit by not assuming an explicit functional form for the fitted curve. The uncertainties, obtained rigorously using Markov chain Monte Carlo sampling, are small enough that it is reasonable to explore hypotheses which depend on second derivatives. It is found that the differences in the second derivatives of n(e) and T-e between the peaked and hollow rotation cases are rather small, suggesting that changes in the second derivatives are not likely to explain the experimental results.
引用
收藏
页数:10
相关论文
共 52 条
[1]  
[Anonymous], 2005, Mathematical Methods for Physi- cists
[2]  
[Anonymous], 1999, INTERPOLATION SPATIA
[3]  
[Anonymous], 2002, Applied Multivariate Analysis
[4]  
BARBER D., 2012, Bayesian Reasoning and Machine Learning
[5]   Intrinsic Rotation Driven by Non-Maxwellian Equilibria in Tokamak Plasmas [J].
Barnes, M. ;
Parra, F. I. ;
Lee, J. P. ;
Belli, E. A. ;
Nave, M. F. F. ;
White, A. E. .
PHYSICAL REVIEW LETTERS, 2013, 111 (05)
[6]  
Barnes M., 2014, COMMUNICATION
[7]   Observation of spontaneous toroidal rotation inversion in ohmically heated Tokamak plasmas [J].
Bortolon, A. ;
Duval, B. P. ;
Pochelon, A. ;
Scarabosio, A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (23)
[8]   Consequences of profile shearing on toroidal momentum transport [J].
Camenen, Y. ;
Idomura, Y. ;
Jolliet, S. ;
Peeters, A. G. .
NUCLEAR FUSION, 2011, 51 (07)
[9]   eqtools. Modular, extensible, open-source, cross-machine Python']Python tools for working with magnetic equilibria [J].
Chilenski, M. A. ;
Faust, I. C. ;
Walk, J. R. .
COMPUTER PHYSICS COMMUNICATIONS, 2017, 210 :155-162
[10]   Improved profile fitting and quantification of uncertainty in experimental measurements of impurity transport coefficients using Gaussian process regression [J].
Chilenski, M. A. ;
Greenwald, M. ;
Marzouk, Y. ;
Howard, N. T. ;
White, A. E. ;
Rice, J. E. ;
Walk, J. R. .
NUCLEAR FUSION, 2015, 55 (02)