Neuropsychological Predictors of Fatigue in Post-COVID Syndrome

被引:20
作者
Matias-Guiu, Jordi A. [1 ]
Delgado-Alonso, Cristina [1 ]
Diez-Cirarda, Maria [1 ]
Martinez-Petit, Alvaro [2 ]
Oliver-Mas, Silvia [1 ]
Delgado-Alvarez, Alfonso [1 ]
Cuevas, Constanza [1 ]
Valles-Salgado, Maria [1 ]
Gil, Maria Jose [1 ]
Yus, Miguel [3 ]
Gomez-Ruiz, Natividad [3 ]
Polidura, Carmen [3 ]
Pagan, Josue [2 ,4 ]
Matias-Guiu, Jorge [1 ]
Ayala, Jose Luis [4 ,5 ]
机构
[1] Univ Complutense Madrid, Hosp Clin San Carlos, Hlth Res Inst San Carlos IdISCC, Dept Neurol, Madrid 28040, Spain
[2] Univ Politecn Madrid, Dept Elect Engn, Madrid 28040, Spain
[3] Univ Complutense Madrid, Clin San Carlos Hlth Res Inst San Carlos IdISC, Dept Radiol, Madrid 28040, Spain
[4] Univ Politecn Madrid, Ctr Computat Simulat, Campus Montegancedo, Madrid 28223, Spain
[5] Univ Complutense Madrid, Fac Informat, Dept Comp Architecture & Automat, Madrid 28040, Spain
关键词
fatigue; cognitive; neuropsychological; machine learning; post-COVID syndrome; PROJECT METHODS; IMPACT;
D O I
10.3390/jcm11133886
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Fatigue is one of the most disabling symptoms in several neurological disorders and has an important cognitive component. However, the relationship between self-reported cognitive fatigue and objective cognitive assessment results remains elusive. Patients with post-COVID syndrome often report fatigue and cognitive issues several months after the acute infection. We aimed to develop predictive models of fatigue using neuropsychological assessments to evaluate the relationship between cognitive fatigue and objective neuropsychological assessment results. We conducted a cross-sectional study of 113 patients with post-COVID syndrome, assessing them with the Modified Fatigue Impact Scale (MFIS) and a comprehensive neuropsychological battery including standardized and computerized cognitive tests. Several machine learning algorithms were developed to predict MFIS scores (total score and cognitive fatigue score) based on neuropsychological test scores. MFIS showed moderate correlations only with the Stroop Color-Word Interference Test. Classification models obtained modest F1-scores for classification between fatigue and non-fatigued or between 3 or 4 degrees of fatigue severity. Regression models to estimate the MFIS score did not achieve adequate R-2 metrics. Our study did not find reliable neuropsychological predictors of cognitive fatigue in the post-COVID syndrome. This has important implications for the interpretation of fatigue and cognitive assessment. Specifically, MFIS cognitive domain could not properly capture actual cognitive fatigue. In addition, our findings suggest different pathophysiological mechanisms of fatigue and cognitive dysfunction in post-COVID syndrome.
引用
收藏
页数:13
相关论文
共 50 条
[1]   Mental fatigue prediction during eye-typing [J].
Bafna, Tanya ;
Baekgaard, Per ;
Hansen, John Paulin .
PLOS ONE, 2021, 16 (02)
[2]   Autonomic dysfunction in SARS-COV-2 infection acute and long-term implications COVID-19 editor's page series [J].
Becker, Richard C. .
JOURNAL OF THROMBOSIS AND THROMBOLYSIS, 2021, 52 (03) :692-707
[3]   Predictive Models of Cognitive Fatigue in Multiple Sclerosis [J].
Berard, Jason A. ;
Smith, Andra M. ;
Walker, Lisa A. S. .
ARCHIVES OF CLINICAL NEUROPSYCHOLOGY, 2019, 34 (01) :31-38
[4]   Post-COVID-19 fatigue: the contribution of cognitive and neuropsychiatric symptoms [J].
Calabria, Marco ;
Garcia-Sanchez, Carmen ;
Grunden, Nicholas ;
Pons, Catalina ;
Antonio Arroyo, Juan ;
Gomez-Anson, Beatriz ;
Estevez Garcia, Marina del Carmen ;
Belvis, Roberto ;
Morollon, Noemi ;
Vera Igual, Javier ;
Mur, Isabel ;
Pomar, Virginia ;
Domingo, Pere .
JOURNAL OF NEUROLOGY, 2022, 269 (08) :3990-3999
[5]   Fatigue and cognitive impairment in Post-COVID-19 Syndrome: A systematic review and meta-analysis [J].
Ceban, Felicia ;
Ling, Susan ;
Lui, Leanna M. W. ;
Lee, Yena ;
Gill, Hartej ;
Teopiz, Kayla M. ;
Rodrigues, Nelson B. ;
Subramaniapillai, Mehala ;
Di Vincenzo, Joshua D. ;
Cao, Bing ;
Lin, Kangguang ;
Mansur, Rodrigo B. ;
Ho, Roger C. ;
Rosenblat, Joshua D. ;
Miskowiak, Kamilla W. ;
Vinberg, Maj ;
Maletic, Vladimir ;
McIntyre, Roger S. .
BRAIN BEHAVIOR AND IMMUNITY, 2022, 101 :93-135
[6]   Fatigue in neurological disorders [J].
Chaudhuri, A ;
Behan, PO .
LANCET, 2004, 363 (9413) :978-988
[7]   What is the meaning of PASAT rejection in multiple sclerosis? [J].
Cortes-Martinez, Ana ;
Matias-Guiu, Jordi A. ;
Pytel, Vanesa ;
Montero, Paloma ;
Moreno-Ramos, Teresa ;
Matias-Guiu, Jorge .
ACTA NEUROLOGICA SCANDINAVICA, 2019, 139 (06) :559-562
[8]   Effectiveness of Mobile Technology in Managing Fatigue: Balert App [J].
De La Vega, Ricardo ;
Anabalon, Hector ;
Jara, Cristian ;
Villamil-Cabello, Eduardo ;
Chervellino, Miguel ;
Calvo-Rodriguez, Alvaro .
FRONTIERS IN PSYCHOLOGY, 2021, 12
[9]   Validation of two new scales for the assessment of fatigue in Multiple Sclerosis: F-2-MS and FACIT-F [J].
Delgado- 'Alvarez, Alfonso ;
Matias-Guiu, Jordi A. ;
Delgado-Alonso, Cristina ;
Cuevas, Constanza ;
Palacios-Sarmiento, Marta ;
Vidorreta-Ballesteros, Lucia ;
Montero-Escribano, Paloma ;
Matias-Guiu, Jorge .
MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2022, 63
[10]   Cognitive dysfunction associated with COVID-19: A comprehensive neuropsychological study [J].
Delgado-Alonso, Cristina ;
Valles-Salgado, Maria ;
Delgado-Alvarez, Alfonso ;
Yus, Miguel ;
Gomez-Ruiz, Natividad ;
Jorquera, Manuela ;
Polidura, Carmen ;
Jose Gil, Maria ;
Marcos, Alberto ;
Matias-Guiu, Jorge ;
Matias-Guiu, Jordi A. .
JOURNAL OF PSYCHIATRIC RESEARCH, 2022, 150 :40-46