Additivity properties of Milnor's (μ)over-bar-invariants

被引:15
作者
Krushkal, VS [1 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
(mu)over-bar-invariants; connected sum of links; link homotopy; gropes;
D O I
10.1142/S0218216598000322
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that Milnor's <(mu)over bar>-invariants are additive under the connected sum operation for links, and establish some corollaries of this result. The appendix describes a technique for finding presentations of nilpotent quotients of groups, and a lemma helpful for locating gropes in the complement of surfaces in four-space.
引用
收藏
页码:625 / 637
页数:13
相关论文
共 17 条
[1]  
COCHRAN TD, 1990, MEMOIRS AMS, V84
[2]  
Dwyer W.G., 1975, J. Pure Appl. Algebra, V6, P177, DOI DOI 10.1016/0022-4049(75)90006-7
[3]   4-MANIFOLD TOPOLOGY .2. DWYERS FILTRATION AND SURGERY KERNELS [J].
FREEDMAN, MH ;
TEICHNER, P .
INVENTIONES MATHEMATICAE, 1995, 122 (03) :531-557
[4]   ON THE (A,B)-SLICE PROBLEM [J].
FREEDMAN, MH ;
LIN, XS .
TOPOLOGY, 1989, 28 (01) :91-110
[5]   ARE THE BORROMEAN RINGS A-B-SLICE [J].
FREEDMAN, MH .
TOPOLOGY AND ITS APPLICATIONS, 1986, 24 (1-3) :143-145
[6]   LINK CONCORDANCE IMPLIES LINK HOMOTOPY [J].
GIFFEN, CH .
MATHEMATICA SCANDINAVICA, 1979, 45 (02) :243-254
[7]   CONCORDANCE IMPLIES HOMOTOPY FOR CLASSICAL LINKS IN M3 [J].
GOLDSMITH, DL .
COMMENTARII MATHEMATICI HELVETICI, 1979, 54 (03) :347-355
[8]  
KARRAS A, 1966, COMBINATORIAL GROUP
[9]  
KRUSHKAL VS, IN PRESS RELATIVE SL
[10]  
KRUSHKAL VS, 1997057 MSRI