Nanomechanical properties of silica-coated multiwall carbon nanotubes-poly(methyl methacrylate) composites

被引:90
作者
Olek, M
Kempa, K
Jurga, S
Giersig, M [1 ]
机构
[1] Ctr Adv European Studies & Res, Bonn, Germany
[2] Boston Coll, Boston, MA USA
[3] Adam Mickiewicz Univ, Poznan, Poland
关键词
D O I
10.1021/la0470784
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The mechanical properties of polymer composites, reinforced with silica-coated multiwall carbon nanotubes (MWNTs), have been studied using the nanoindentation technique. The hardness and the Young's modulus have been found to increase strongly with the increasing content of these nanotubes in the polymer matrix. Similar experiments conducted on thin films containing MWNTs, but without a silica shell, revealed that the presence of these nanotubes does not affect the nanomechanical properties of the composites. While carbon nanotubes (CNTs) have a very high tensile strength due to the nanotube stiffness, composites fabricated with CNTs may exhibit inferior toughness. The silica shell on the surface of a nanotube enhances its stiffness and rigidity. Our composites, at 4 wt % of the silica-coated MWNTs, display a maximum hardness of 120 +/- 20 MPa, and a Young's modulus of 9 +/- 1 GPa. These are respectively 2 and 3 times higher than those for the polymeric matrix. Here, we describe a method for the silica coating of MWNTs. This is a simple and efficient technique, adaptable to large-scale production, and might lead to new advanced polymer based materials, with very high axial and bending strength.
引用
收藏
页码:3146 / 3152
页数:7
相关论文
共 39 条
[1]   Nanotubes from carbon [J].
Ajayan, PM .
CHEMICAL REVIEWS, 1999, 99 (07) :1787-1799
[2]   Multiwall carbon nanotubes: Synthesis and application [J].
Andrews, R ;
Jacques, D ;
Qian, DL ;
Rantell, T .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) :1008-1017
[3]   Nano-indentation of polymeric surfaces [J].
Briscoe, BJ ;
Fiori, L ;
Pelillo, E .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1998, 31 (19) :2395-2405
[4]   Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results [J].
Chudoba, T ;
Richter, F .
SURFACE & COATINGS TECHNOLOGY, 2001, 148 (2-3) :191-198
[5]   Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes [J].
Demczyk, BG ;
Wang, YM ;
Cumings, J ;
Hetman, M ;
Han, W ;
Zettl, A ;
Ritchie, RO .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2002, 334 (1-2) :173-178
[6]   Study of elastic modulus and yield strength of polymer thin films using atomic force microscopy [J].
Du, BY ;
Tsui, OKC ;
Zhang, QL ;
He, TB .
LANGMUIR, 2001, 17 (11) :3286-3291
[7]   Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability [J].
Du, FM ;
Fischer, JE ;
Winey, KI .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2003, 41 (24) :3333-3338
[8]   Nanoindentation testing for evaluating modulus and hardness of single-walled carbon nanotube-reinforced epoxy composites [J].
Dutta, AK ;
Penumadu, D ;
Files, B .
JOURNAL OF MATERIALS RESEARCH, 2004, 19 (01) :158-164
[9]   Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites [J].
Jin, Z ;
Pramoda, KP ;
Xu, G ;
Goh, SH .
CHEMICAL PHYSICS LETTERS, 2001, 337 (1-3) :43-47
[10]   Characterization and nonlinear optical properties of a poly(acrylic acid)-surfactant-multi-walled carbon nanotube complex [J].
Jin, ZX ;
Huang, L ;
Goh, SH ;
Xu, GQ ;
Ji, W .
CHEMICAL PHYSICS LETTERS, 2000, 332 (5-6) :461-466