TIME-DEPENDENT ATTRACTOR FOR THE OSCILLON EQUATION

被引:55
作者
Di Plinio, Francesco [1 ]
Duane, Gregory S. [2 ,3 ]
Temam, Roger [4 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[2] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA
[3] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA
[4] Indiana Univ, Inst Sci Comp & Appl Math, Bloomington, IN 47405 USA
基金
美国国家科学基金会;
关键词
Oscillon equation; nonautonomous attractors; fractal dimension; NONAUTONOMOUS DYNAMICAL-SYSTEMS; PULLBACK ATTRACTORS; WAVE-EQUATIONS; GLOBAL ATTRACTORS; CONFIGURATIONS; DIMENSION;
D O I
10.3934/dcds.2011.29.141
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the asymptotic behavior of the nonautonomous evolution problem generated by the Oscillon equation partial derivative(tt)u(x, t)+ H partial derivative(t)u(x, t) -e(-2Ht) partial derivative(xx)u(x, t) + V'(u(x, t)) = 0, (x, t) is an element of (0, 1) x R, with periodic boundary conditions, where H > 0 is the Hubble constant and V is a nonlinear potential of arbitrary polynomial growth. After constructing a suitable dynamical framework to deal with the explicit time dependence of the energy of the solution, we establish the existence of a regular global attractor A = A(t). The kernel sections A(t) have finite fractal dimension.
引用
收藏
页码:141 / 167
页数:27
相关论文
共 35 条
[1]   Long-lived oscillons from asymmetric bubbles: Existence and stability [J].
Adib, AB ;
Gleiser, M ;
Almeida, CAS .
PHYSICAL REVIEW D, 2002, 66 (08)
[2]  
[Anonymous], 1997, INFINITE DIMENSIONAL
[3]  
[Anonymous], 1991, LEZIONI LINCEI 1988
[4]  
[Anonymous], 1992, Studies in Mathematics and its Applications
[5]  
Arnold L, 1998, Random dynamical systems
[6]  
Belleri V, 2001, DISCRET CONTIN DYN S, V7, P719
[7]   PATHWISE GLOBAL ATTRACTORS FOR STATIONARY RANDOM DYNAMIC-SYSTEMS [J].
BRZEZNIAK, Z ;
CAPINSKI, M ;
FLANDOLI, F .
PROBABILITY THEORY AND RELATED FIELDS, 1993, 95 (01) :87-102
[8]   Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains [J].
Caraballo, T ;
Lukaszewicz, G ;
Real, J .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (04) :263-268
[9]   Pullback attractors for asymptotically compact non-autonomous dynamical systems [J].
Caraballo, T ;
Lukaszewicz, G ;
Real, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (03) :484-498
[10]   The dimension of attractors of nonautonomous partial differential equations [J].
Caraballo, T ;
Langa, JA ;
Valero, J .
ANZIAM JOURNAL, 2003, 45 :207-222