On coloring box graphs

被引:0
作者
Hogan, Emilie [1 ]
O'Rourke, Joseph [2 ]
Traub, Cindy [3 ]
Veomett, Ellen [4 ]
机构
[1] Pacific NW Natl Lab, Richland, WA 99352 USA
[2] Smith Coll, Northampton, MA 01063 USA
[3] So Illinois Univ Edwardsville, Chicago, IL USA
[4] St Marys Coll Calif, New York, NY 10020 USA
基金
美国国家科学基金会;
关键词
Graph coloring; Box graph; Chromatic number; MAP;
D O I
10.1016/j.disc.2014.09.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the chromatic number of a family of graphs we call box graphs, which arise from a box complex in n-space. It is straightforward to show that any box graph in the plane has an admissible coloring with three colors, and that any box graph in n-space has an admissible coloring with n + 1 colors. We show that for box graphs in n-space, if the lengths of the boxes in the corresponding box complex take on no more than two values from the set {1, 2, 3}, then the box graph is 3-colorable, and for some graphs three colors are required. We also show that box graphs in 3-space which do not have cycles of length four (which we call "string complexes") are 3-colorable. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:209 / 216
页数:8
相关论文
共 8 条
[1]  
[Anonymous], GEOMBINATORICS
[2]   EVERY PLANAR MAP IS 4 COLORABLE [J].
APPEL, K ;
HAKEN, W .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 82 (05) :711-712
[3]   Higher-Dimensional Analogues of the Map Coloring Problem [J].
Bagchi, Bhaskar ;
Datta, Basudeb .
AMERICAN MATHEMATICAL MONTHLY, 2013, 120 (08) :733-737
[4]  
Bollobas B., 1998, GRAD TEXT M, P215
[5]  
Gallagher Suzanne, 2003, P 15 CAN C COMP GEOM, P56
[6]   On almost (k-1)-degenerate (k+1)-chromatic graphs and hypergraphs [J].
Kostochka, Alexandr V. .
DISCRETE MATHEMATICS, 2013, 313 (04) :366-374
[7]  
O'Rourke Joseph, 2010, ARXIV10124017CSDM
[8]   Rhombic Penrose tilings can be 3-colored [J].
Sibley, T ;
Wagon, S .
AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (03) :251-253