High-efficiency ternary nonfullerene polymer solar cells with increased phase purity and reduced nonradiative energy loss

被引:28
|
作者
Zhang, Cai'e [1 ]
Jiang, Pengcheng [1 ]
Zhou, Xiaobo [3 ]
Liu, Haiqin [2 ]
Guo, Qingxin [1 ]
Xu, Xinjun [1 ]
Liu, Yahui [1 ]
Tang, Zheng [2 ]
Ma, Wei [3 ]
Bo, Zhishan [1 ]
机构
[1] Beijing Normal Univ, Coll Chem, Beijing Key Lab Energy Convers & Storage Mat, Beijing 100875, Peoples R China
[2] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Ctr Adv Low Dimens Mat, Shanghai 201620, Peoples R China
[3] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
关键词
ELECTRON-ACCEPTORS; PERFORMANCE; FULLERENE;
D O I
10.1039/c9ta12029g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we used a ternary blend strategy to improve the photovoltaic performance of organic solar cells (OSCs). PBDB-T:IDT-EDOT-based binary blend devices show a power conversion efficiency (PCE) of 9.93%, and the ternary devices with PC71BM as the third component exhibit a PCE of 12.07% with simultaneously enhanced V-oc, J(sc) and FF. The broadened absorption, optimized morphology and balanced charge carrier mobility of these devices are responsible for these improvements. The introduction of PC71BM can disperse the IDT-EDOT aggregates, enhance the phase purity, and increase the electroluminescence quantum efficiency (EQE(EL)). Furthermore, the performance of the ternary devices is not very sensitive to the weight ratio of the two acceptors. PCEs of over 11% are obtained even though the composition gradually varies from 1 : 1 : 0.2 to 1 : 0.4 : 0.8. Our results demonstrate that PC71BM is a highly promising second acceptor for the construction of high-efficiency ternary OSCs.
引用
收藏
页码:2123 / 2130
页数:8
相关论文
共 50 条
  • [1] Improved Charge Transport and Reduced Nonradiative Energy Loss Enable Over 16% Efficiency in Ternary Polymer Solar Cells
    Yu, Runnan
    Yao, Huifeng
    Cui, Yong
    Hong, Ling
    He, Chang
    Hou, Jianhui
    ADVANCED MATERIALS, 2019, 31 (36)
  • [2] High Efficiency Ternary Nonfullerene Polymer Solar Cells with Two Polymer Donors and an Organic Semiconductor Acceptor
    Zhong, Lian
    Gao, Liang
    Bin, Haijun
    Hu, Qin
    Zhang, Zhi-Guo
    Liu, Feng
    Russell, Thomas P.
    Zhang, Zhanjun
    Li, Yongfang
    ADVANCED ENERGY MATERIALS, 2017, 7 (14)
  • [3] High-Efficiency Ternary Polymer Solar Cells Based on Intense FRET Energy Transfer Process
    Chen, Weichao
    Jiang, Huanxiang
    Huang, Gongyue
    Zhang, Jun
    Cai, Mian
    Wan, Xiaobo
    Yang, Renqiang
    SOLAR RRL, 2018, 2 (08):
  • [4] Influence of Alkyl Substitution Position on Wide-Bandgap Polymers in High-Efficiency Nonfullerene Polymer Solar Cells
    Guo, Qing
    Li, Wanbin
    Li, Guangda
    Wang, Kun
    Guo, Xia
    Zhang, Maojie
    Li, Yongfang
    Wong, Wai-Yeung
    MACROMOLECULAR RAPID COMMUNICATIONS, 2020, 41 (21)
  • [5] High-efficiency ternary nonfullerene organic solar cells with record long-term thermal stability
    Zhang, Cai'e
    Ming, Shouli
    Wu, Hongbo
    Wang, Xiaodong
    Huang, Hao
    Xue, Wenyue
    Xu, Xinjun
    Tang, Zheng
    Ma, Wei
    Bo, Zhishan
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (43) : 22907 - 22917
  • [6] Efficiency enhancement of a fluorinated wide-bandgap polymer for ternary nonfullerene organic solar cells
    Song, Chang Eun
    Ham, Hyobin
    Noh, Jiwoong
    Lee, Sang Kyu
    Kang, In-Nam
    POLYMER, 2020, 188
  • [7] High-efficiency ternary polymer solar cells employing the solid solution as the donor phase
    Yan, Chi
    Yang, Qingqing
    Wang, Bei
    Yu, Bo
    Wang, Haibo
    Xie, Zhiyuan
    ORGANIC ELECTRONICS, 2018, 63 : 109 - 113
  • [8] Ternary Strategy Enabling High-Performance Organic Solar Cells with Optimized Film Morphology and Reduced Nonradiative Energy Loss
    Li, Miao
    Zhou, Yuanyuan
    Zhang, Ming
    Liu, Yahui
    Ma, Zaifei
    Liu, Feng
    Qin, Ruiping
    Bo, Zhishan
    SOLAR RRL, 2021, 5 (12)
  • [9] Nonfullerene Acceptors with Enhanced Solubility and Ordered Packing for High-Efficiency Polymer Solar Cells
    Liu, Yahui
    Li, Miao
    Zhou, Xiaobo
    Jia, Qing-Qing
    Feng, Shiyu
    Jiang, Pengcheng
    Xu, Xinjun
    Ma, Wei
    Li, Hai-Bei
    Bo, Zhishan
    ACS ENERGY LETTERS, 2018, 3 (08): : 1832 - 1839
  • [10] High Voc ternary nonfullerene polymer solar cells with improved efficiency and good thermal stability
    Wang, Zhen
    Nian, Yaowen
    Jiang, Haiying
    Pan, Feilong
    Hu, Zelong
    Zhang, Lianjie
    Cao, Yong
    Chen, Junwu
    ORGANIC ELECTRONICS, 2019, 69 : 174 - 180