ALGEBRAIC DEGREE IN SPATIAL MATRICIAL NUMERICAL RANGES OF LINEAR OPERATORS

被引:0
作者
Bernik, J. [1 ]
Livshits, L. [2 ]
MacDonald, G. [3 ]
Marcoux, L. [4 ]
Mastnak, M. [5 ]
Radjavi, H. [4 ]
机构
[1] Univ Ljubljani, Fak Matematiko Fiziko, Jadranska 19, Ljubljana 1000, Slovenia
[2] Colby Coll, Dept Math, Waterville, ME 04901 USA
[3] Univ Prince Edward Isl, Sch Math & Computat Sci, Charlottetown, PE C1A 4P3, Canada
[4] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
[5] St Marys Univ, Dept Math & Comp Sci, 923 Robie ST, Halifax, NS B3N 1Z9, Canada
关键词
Spatial matricial numerical ranges; algebraic degree; rank modulo scalars; orthogonal compressions; principal submatrices; cyclic matrices; non-derogatory matrices;
D O I
10.1090/proc/15523
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the maximal algebraic degree of principal ortho-compressions of linear operators that constitute spatial matricial numerical ranges of higher order. We demonstrate (amongst other things) that for a (possibly unbounded) operator L on a Hilbert space, every principal m-dimensional ortho-compression of L has algebraic degree less than m if and only if rank(L-lambda I) <= m - 2 for some lambda is an element of C.
引用
收藏
页码:4083 / 4097
页数:15
相关论文
共 11 条
  • [1] BONSALL FF, 1973, J LOND MATH SOC, V6, P329
  • [2] Matrix algebras with a certain compression property I
    Cramer, Zachary
    Marcoux, Laurent W.
    Radjavi, Heydar
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 621 : 50 - 85
  • [3] Matrix algebras with a certain compression property II
    Cramer, Zachary
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 619 (619) : 210 - 263
  • [4] FARENICK DR, 1993, LINEAR MULTILINEAR A, V34, P197, DOI DOI 10.1080/03081089308818222
  • [5] Gohberg I, 2006, CLASS APPL MATH, V51, P1, DOI 10.1137/1.9780898719093
  • [6] Hoffman K., 1971, Linear Algebra
  • [7] Li C.K., 1991, Linear and Multilinear Algebra, V28, P229, DOI [10.1080/03081089108818047, DOI 10.1080/03081089108818047]
  • [9] Hilbert space operators with compatible off-diagonal corners
    Livshits, L.
    MacDonald, G.
    Marcoux, L. W.
    Radjavi, H.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (04) : 892 - 925
  • [10] Normal operators with highly incompatible off-diagonal corners
    Marcoux, Laurent W.
    Radjavi, Heydar
    Zhang, Yuanhang
    [J]. STUDIA MATHEMATICA, 2020, 256 (01) : 73 - 92