A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH

被引:118
作者
Taylor-Weiner, Amaro [1 ]
Pokkalla, Harsha [1 ]
Han, Ling [2 ]
Jia, Catherine [2 ]
Huss, Ryan [2 ]
Chung, Chuhan [2 ]
Elliott, Hunter [1 ]
Glass, Benjamin [1 ]
Pethia, Kishalve [1 ]
Carrasco-Zevallos, Oscar [1 ]
Shukla, Chinmay [1 ]
Khettry, Urmila [3 ]
Najarian, Robert [4 ]
Taliano, Ross [5 ]
Subramanian, G. Mani [2 ]
Myers, Robert P. [2 ]
Wapinski, Ilan [1 ]
Khosla, Aditya [1 ]
Resnick, Murray [1 ,5 ]
Montalto, Michael C. [1 ]
Anstee, Quentin M. [6 ]
Wong, Vincent Wai-Sun [7 ]
Trauner, Michael [8 ]
Lawitz, Eric J. [9 ]
Harrison, Stephen A. [10 ]
Okanoue, Takeshi [11 ]
Romero-Gomez, Manuel [12 ]
Goodman, Zachary [13 ,14 ]
Loomba, Rohit [15 ]
Beck, Andrew H. [1 ]
Younossi, Zobair M. [13 ,14 ]
机构
[1] PathAI, 120 Brookline Ave, Boston, MA 02115 USA
[2] Gilead Sci Inc, 353 Lakeside Dr, Foster City, CA 94404 USA
[3] Lahey Hosp & Med Ctr, Burlington, MA USA
[4] Univ Gastroenterol, Portsmouth, RI USA
[5] Brown Univ, Warren Alpert Med Sch, Providence, RI 02912 USA
[6] Newcastle Univ, Fac Med Sci, Translat & Clin Res Inst, Newcastle Upon Tyne, Tyne & Wear, England
[7] Chinese Univ Hong Kong, Dept Med & Therapeut, Hong Kong, Peoples R China
[8] Med Univ Vienna, Div Gastroenterol & Hepatol, Vienna, Austria
[9] UT Hlth San Antonio, Texas Liver Inst, San Antonio, TX USA
[10] Pinnacle Clin Res, San Antonio, TX USA
[11] Saiseikai Suita Hosp, Suita, Osaka, Japan
[12] Hosp Univ Virgen Rocio, Seville, Spain
[13] Inova Fairfax Med Campus, Dept Med, Falls Church, VA USA
[14] Inova Hlth Syst, Betty & Guy Beatty Ctr Integrated Res, Falls Church, VA USA
[15] Univ Calif San Diego, NAFLD Res Ctr, La Jolla, CA 92093 USA
关键词
SCORING SYSTEM; INFLAMMATION; BIOPSIES; FIBROSIS;
D O I
10.1002/hep.31750
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background and Aims Manual histological assessment is currently the accepted standard for diagnosing and monitoring disease progression in NASH, but is limited by variability in interpretation and insensitivity to change. Thus, there is a critical need for improved tools to assess liver pathology in order to risk stratify NASH patients and monitor treatment response. Approach and Results Here, we describe a machine learning (ML)-based approach to liver histology assessment, which accurately characterizes disease severity and heterogeneity, and sensitively quantifies treatment response in NASH. We use samples from three randomized controlled trials to build and then validate deep convolutional neural networks to measure key histological features in NASH, including steatosis, inflammation, hepatocellular ballooning, and fibrosis. The ML-based predictions showed strong correlations with expert pathologists and were prognostic of progression to cirrhosis and liver-related clinical events. We developed a heterogeneity-sensitive metric of fibrosis response, the Deep Learning Treatment Assessment Liver Fibrosis score, which measured antifibrotic treatment effects that went undetected by manual pathological staging and was concordant with histological disease progression. Conclusions Our ML method has shown reproducibility and sensitivity and was prognostic for disease progression, demonstrating the power of ML to advance our understanding of disease heterogeneity in NASH, risk stratify affected patients, and facilitate the development of therapies.
引用
收藏
页码:133 / 147
页数:15
相关论文
共 33 条
[1]   Artificial intelligence as the next step towards precision pathology [J].
Acs, B. ;
Rantalainen, M. ;
Hartman, J. .
JOURNAL OF INTERNAL MEDICINE, 2020, 288 (01) :62-81
[2]   Refining Sample-Size Estimations Based Upon Placebo Response in Trials of Agents for Nonalcoholic Fatty Liver Disease [J].
Ajmera, Veeral ;
Loomba, Rohit .
CLINICAL GASTROENTEROLOGY AND HEPATOLOGY, 2019, 17 (04) :607-609
[3]   Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology [J].
Bera, Kaustav ;
Schalper, Kurt A. ;
Rimm, David L. ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) :703-715
[4]  
Brener S, 2015, Ont Health Technol Assess Ser, V15, P1
[5]   Suboptimal reliability of liver biopsy evaluation has implications for randomized clinical trials [J].
Davison, Beth A. ;
Harrison, Stephen A. ;
Cotter, Gad ;
Alkhouri, Naim ;
Sanyal, Arun ;
Edwards, Christopher ;
Colca, Jerry R. ;
Iwashita, Julie ;
Koch, Gary G. ;
Dittrich, Howard C. .
JOURNAL OF HEPATOLOGY, 2020, 73 (06) :1322-1332
[6]   Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030 [J].
Estes, Chris ;
Anstee, Quentin M. ;
Teresa Arias-Loste, Maria ;
Bantel, Heike ;
Bellentani, Stefano ;
Caballeria, Joan ;
Colombo, Massimo ;
Craxi, Antonio ;
Crespo, Javier ;
Day, Christopher P. ;
Eguchi, Yuichiro ;
Geier, Andreas ;
Kondili, Loreta A. ;
Kroy, Daniela C. ;
Lazarus, Jeffrey V. ;
Loomba, Rohit ;
Manns, Michael P. ;
Marchesini, Giulio ;
Nakajima, Atsushi ;
Negro, Francesco ;
Petta, Salvatore ;
Ratziu, Vlad ;
Romero-Gomez, Manuel ;
Sanyal, Arun ;
Schattenberg, Joern M. ;
Tacke, Frank ;
Tanaka, Junko ;
Trautwein, Christian ;
Wei, Lai ;
Zeuzem, Stefan ;
Razavi, Homie .
JOURNAL OF HEPATOLOGY, 2018, 69 (04) :896-904
[7]   Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease [J].
Estes, Chris ;
Razavi, Homie ;
Loomba, Rohit ;
Younossi, Zobair ;
Sanyal, Arun J. .
HEPATOLOGY, 2018, 67 (01) :123-133
[8]  
FDA, 2018, NONC NON STEAT LIV F
[9]   High-Throughput, Machine Learning-Based Quantification of Steatosis, Inflammation, Ballooning, and Fibrosis in Biopsies From Patients With Nonalcoholic Fatty Liver Disease [J].
Forlano, Roberta ;
Mullish, Benjamin H. ;
Giannakeas, Nikolaos ;
Maurice, James B. ;
Angkathunyakul, Napat ;
Lloyd, Josephine ;
Tzallas, Alexandros T. ;
Tsipouras, Markos ;
Yee, Michael ;
Thursz, Mark R. ;
Goldin, Robert D. ;
Manousou, Pinelopi .
CLINICAL GASTROENTEROLOGY AND HEPATOLOGY, 2020, 18 (09) :2081-+
[10]  
Frohmader A., 2019, ARXIV191204945