Photonic Emulator for Inverse Design

被引:22
作者
Cheng, Junwei [1 ]
Zhang, Wenkai [1 ]
Gu, Wentao [1 ]
Zhou, Hailong [1 ]
Dong, Jianji [1 ,2 ]
Zhang, Xinliang [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Opt Valley Lab, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
integrated optics; silicon photonics; inverse design; photonic emulator; programmable photonics; PARTICLE-SWARM OPTIMIZATION; MOORES LAW; MODE; MULTIPLEXER; COMPACT; NETWORKS;
D O I
10.1021/acsphotonics.2c00716
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Inverse design has become a powerful tool widely used in the design of high-performance integrated photonic devices. However, current inverse design methods rely heavily on computationally intensive electromagnetic simulation or timeconsuming model training. Here, we proposed an efficient inverse design strategy, called a photonic emulator, that uses light propagation instead of electromagnetic simulation. We experimentally demonstrated the application of this photonic emulator for various typical single-and multiwavelength devices and functions, such as an optical multiple-input-multiple-output (MIMO) descrambler (at the modulation rate of 10 Gbit/s), matrix computation (percentage error < 2%), and a tunable wavelength selective switch (extinction ratio > 10 dB for three-wavelength routing). The photonic emulator enables high-precision reconfiguration of the design target on the basis of precise tuning of the effective refractive index near the pixels in the design area and fast feedback of the optical response in real time. Our work shows that the concept of propagation-as-computation can be used for inverse design to provide an efficient method for designing reconfigurable integrated photonic devices.
引用
收藏
页码:2173 / 2181
页数:9
相关论文
共 58 条
[1]   Unscrambling light-automatically undoing strong mixing between modes [J].
Annoni, Andrea ;
Guglielmi, Emanuele ;
Carminati, Marco ;
Ferrari, Giorgio ;
Sampietro, Marco ;
Miller, David A. B. ;
Melloni, Andrea ;
Morichetti, Francesco .
LIGHT-SCIENCE & APPLICATIONS, 2017, 6 :e17110-e17110
[2]   A single inverse-designed photonic structure that performs parallel computing [J].
Camacho, Miguel ;
Edwards, Brian ;
Engheta, Nader .
NATURE COMMUNICATIONS, 2021, 12 (01)
[3]   Ultra-compact mode (de) multiplexer based on subwavelength asymmetric Y-junction [J].
Chang, Weijie ;
Lu, Luluzi ;
Ren, Xinshu ;
Li, Dongyu ;
Pan, Zepeng ;
Cheng, Mengfan ;
Liu, Deming ;
Zhang, Minming .
OPTICS EXPRESS, 2018, 26 (07) :8162-8170
[4]   Synthesis design of artificial magnetic metamaterials using a genetic algorithm [J].
Chen, P. Y. ;
Chen, C. H. ;
Wang, H. ;
Tsai, J. H. ;
Ni, W. X. .
OPTICS EXPRESS, 2008, 16 (17) :12806-12818
[5]   Inverse design of nanoparticles for enhanced Raman scattering [J].
Christiansen, Rasmus E. ;
Michon, Jerome ;
Benzaouia, Mohammed ;
Sigmund, Ole ;
Johnson, Steven G. .
OPTICS EXPRESS, 2020, 28 (04) :4444-4462
[6]   Inverse-designed metastructures that solve equations [J].
Estakhri, Nasim Mohammadi ;
Edwards, Brian ;
Engheta, Nader .
SCIENCE, 2019, 363 (6433) :1333-+
[7]   Experimental Demonstration of Genetic Algorithm Based Metalens Design for Generating Side-Lobe-Suppressed, Large Depth-of-Focus Light Sheet [J].
Fan, Yulong ;
Chen, Mu Ku ;
Qiu, Meng ;
Lin, Ren-Jie ;
Xu, Yunkun ;
Wen, Jing ;
Tang, Tianchen ;
Liu, Xiaoyuan ;
Jin, Wei ;
Tsai, Din Ping ;
Lei, Dangyuan .
LASER & PHOTONICS REVIEWS, 2022, 16 (02)
[8]   Phase-controlled metasurface design via optimized genetic algorithm [J].
Fan, Yulong ;
Xu, Yunkun ;
Qiu, Meng ;
Jin, Wei ;
Zhang, Lei ;
Lam, Edmund Y. ;
Tsai, Din Ping ;
Lei, Dangyuan .
NANOPHOTONICS, 2020, 9 (12) :3931-3939
[9]   Parallel convolutional processing using an integrated photonic tensor core [J].
Feldmann, J. ;
Youngblood, N. ;
Karpov, M. ;
Gehring, H. ;
Li, X. ;
Stappers, M. ;
Le Gallo, M. ;
Fu, X. ;
Lukashchuk, A. ;
Raja, A. S. ;
Liu, J. ;
Wright, C. D. ;
Sebastian, A. ;
Kippenberg, T. J. ;
Pernice, W. H. P. ;
Bhaskaran, H. .
NATURE, 2021, 589 (7840) :52-+
[10]   All-optical spiking neurosynaptic networks with self-learning capabilities [J].
Feldmann, J. ;
Youngblood, N. ;
Wright, C. D. ;
Bhaskaran, H. ;
Pernice, W. H. P. .
NATURE, 2019, 569 (7755) :208-+