Coordination of Morphogenesis and Cell-Fate Specification in Development

被引:128
作者
Chan, Chii J. [1 ]
Heisenberg, Carl-Philipp [2 ]
Hiiragi, Takashi [1 ]
机构
[1] European Mol Biol Lab, D-69117 Heidelberg, Germany
[2] IST Austria, A-3400 Klosterneuburg, Austria
关键词
LIVING EMBRYONIC-TISSUES; BRILLOUIN MICROSCOPY; MOUSE BLASTOCYST; LINEAGE SEGREGATION; SELF-ORGANIZATION; MECHANICAL FORCES; FLUID FORCES; NODAL FLOW; STEM-CELLS; MECHANOTRANSDUCTION;
D O I
10.1016/j.cub.2017.07.010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During animal development, cell-fate-specific changes in gene expression can modify the material properties of a tissue and drive tissue morphogenesis. While mechanistic insights into the genetic control of tissueshaping events are beginning to emerge, how tissue morphogenesis and mechanics can reciprocally impact cell-fate specification remains relatively unexplored. Here we review recent findings reporting how multicellular morphogenetic events and their underlying mechanical forces can feed back into gene regulatory pathways to specify cell fate. We further discuss emerging techniques that allow for the direct measurement and manipulation of mechanical signals in vivo, offering unprecedented access to study mechanotransduction during development. Examination of the mechanical control of cell fate during tissue morphogenesis will pave the way to an integrated understanding of the design principles that underlie robust tissue patterning in embryonic development.
引用
收藏
页码:R1024 / R1035
页数:12
相关论文
共 131 条
  • [1] Biomechanical forces promote embryonic haematopoiesis
    Adamo, Luigi
    Naveiras, Olaia
    Wenzel, Pamela L.
    McKinney-Freeman, Shannon
    Mack, Peter J.
    Gracia-Sancho, Jorge
    Suchy-Dicey, Astrid
    Yoshimoto, Momoko
    Lensch, M. William
    Yoder, Mervin C.
    Garcia-Cardena, Guillermo
    Daley, George Q.
    [J]. NATURE, 2009, 459 (7250) : 1131 - U120
  • [2] Cell Flow Reorients the Axis of Planar Polarity in the Wing Epithelium of Drosophila
    Aigouy, Benoit
    Farhadifar, Reza
    Staple, Douglas B.
    Sagner, Andreas
    Roeper, Jens-Christian
    Juelicher, Frank
    Eaton, Suzanne
    [J]. CELL, 2010, 142 (05) : 773 - 786
  • [3] Amat F, 2014, NAT METHODS, V11, P951, DOI [10.1038/NMETH.3036, 10.1038/nmeth.3036]
  • [4] Biomechanics of subcellular structures by non-invasive Brillouin microscopy
    Antonacci, Giuseppe
    Braakman, Sietse
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [5] A Mechanical Checkpoint Controls Multicellular Growth through YAP/TAZ Regulation by Actin-Processing Factors
    Aragona, Mariaceleste
    Panciera, Tito
    Manfrin, Andrea
    Giulitti, Stefano
    Michielin, Federica
    Elvassore, Nicola
    Dupont, Sirio
    Piccolo, Stefano
    [J]. CELL, 2013, 154 (05) : 1047 - 1059
  • [6] Self-Organizing Properties of Mouse Pluripotent Cells Initiate Morphogenesis upon Implantation
    Bedzhov, Ivan
    Zernicka-Goetz, Magdalena
    [J]. CELL, 2014, 156 (05) : 1032 - 1044
  • [7] Mechanical strain induces E-cadherin-dependent Yap1 and β-catenin activation to drive cell cycle entry
    Benham-Pyle, Blair W.
    Pruitt, Beth L.
    Nelson, W. James
    [J]. SCIENCE, 2015, 348 (6238) : 1024 - 1027
  • [8] Borghi N., 2012, P NATL ACAD SCI USA, V109, P913
  • [9] Epithelial tricellular junctions act as interphase cell shape sensors to orient mitosis
    Bosveld, Floris
    Markova, Olga
    Guirao, Boris
    Martin, Charlotte
    Wang, Zhimin
    Pierre, Anaelle
    Balakireva, Maria
    Gaugue, Isabelle
    Ainslie, Anna
    Christophorou, Nicolas
    Lubensky, David K.
    Minc, Nicolas
    Bellaiche, Yohanns
    [J]. NATURE, 2016, 530 (7591) : 495 - +
  • [10] CellFIT: A Cellular Force-Inference Toolkit Using Curvilinear Cell Boundaries
    Brodland, G. Wayne
    Veldhuis, Jim H.
    Kim, Steven
    Perrone, Matthew
    Mashburn, David
    Hutson, M. Shane
    [J]. PLOS ONE, 2014, 9 (06):